-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsrgan.py
125 lines (106 loc) · 3.78 KB
/
srgan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import torch
from torch import nn
class ConvBlock(nn.Module):
def __init__(
self,
in_channels,
out_channels,
discriminator=False,
use_act=True,
use_bn=True,
**kwargs,
):
super().__init__()
self.use_act = use_act
self.cnn = nn.Conv2d(in_channels, out_channels, **kwargs, bias=not use_bn)
self.bn = nn.BatchNorm2d(out_channels) if use_bn else nn.Identity()
self.act = (
nn.LeakyReLU(0.2, inplace=True)
if discriminator
else nn.PReLU(num_parameters=out_channels)
)
def forward(self, x):
x = x.to(self.cnn.weight.dtype)
return self.act(self.bn(self.cnn(x))) if self.use_act else self.bn(self.cnn(x))
class UpsampleBlock(nn.Module):
def __init__(self, in_c, scale_factor):
super().__init__()
self.conv = nn.Conv2d(in_c, in_c * scale_factor ** 2, 3, 1, 1)
self.ps = nn.PixelShuffle(scale_factor) # in_c * 4, H, W --> in_c, H*2, W*2
self.act = nn.PReLU(num_parameters=in_c)
def forward(self, x):
return self.act(self.ps(self.conv(x)))
class ResidualBlock(nn.Module):
def __init__(self, in_channels):
super().__init__()
self.block1 = ConvBlock(
in_channels,
in_channels,
kernel_size=3,
stride=1,
padding=1
)
self.block2 = ConvBlock(
in_channels,
in_channels,
kernel_size=3,
stride=1,
padding=1,
use_act=False,
)
def forward(self, x):
out = self.block1(x)
out = self.block2(out)
return out + x
class Generator(nn.Module):
def __init__(self, in_channels=1, num_channels=64, num_blocks=16):
super().__init__()
self.initial = ConvBlock(in_channels, num_channels, kernel_size=9, stride=1, padding=4, use_bn=False)
self.residuals = nn.Sequential(*[ResidualBlock(num_channels) for _ in range(num_blocks)])
self.convblock = ConvBlock(num_channels, num_channels, kernel_size=3, stride=1, padding=1, use_act=False)
self.upsamples = nn.Sequential(UpsampleBlock(num_channels, 2))
self.final = nn.Conv2d(num_channels, in_channels, kernel_size=9, stride=1, padding=4)
def forward(self, x):
initial = self.initial(x)
x = self.residuals(initial)
x = self.convblock(x) + initial
x = self.upsamples(x)
return self.final(x) # torch.tanh(self.final(x))
class Discriminator(nn.Module):
def __init__(self, in_channels=1, features=[64, 64, 128, 128, 256, 256, 512, 512]):
super().__init__()
blocks = []
for idx, feature in enumerate(features):
blocks.append(
ConvBlock(
in_channels,
feature,
kernel_size=3,
stride=1 + idx % 2,
padding=1,
discriminator=True,
use_act=True,
use_bn=False if idx == 0 else True,
)
)
in_channels = feature
self.blocks = nn.Sequential(*blocks)
self.classifier = nn.Sequential(
nn.AdaptiveAvgPool2d((6, 6)),
nn.Flatten(),
nn.Linear(512*6*6, 1024),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(1024, 1),
)
def forward(self, x):
x = self.blocks(x)
return self.classifier(x)
# low_resolution = 75 # 75x75 -> 150x150
# with torch.cuda.amp.autocast():
# x = torch.randn((16, 1, low_resolution, low_resolution))
# gen = Generator()
# gen_out = gen(x)
# disc = Discriminator()
# disc_out = disc(gen_out)
# print(gen_out.shape)
# print(disc_out.shape)