-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathZauberwuerfel-v0.7-20210924.ino
339 lines (306 loc) · 12 KB
/
Zauberwuerfel-v0.7-20210924.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
// Zauberwürfel-Testprogramm
// Version 0.7 - 24-09-2021
const bool debug = true;
// Anschluss-Pins
const int col_edge_out = 2, col_edge_s2 = 3, col_edge_s3 = 4;
const int col_corner_out = 5, col_corner_s2 = 6, col_corner_s3 = 7;
const int m_enable[] = {22, 23, 24, 25, 26, 27};
const int m_step[] = {28, 29, 30, 31, 32, 33};
const int m_dir[] = {34, 35, 36, 37, 38, 39};
const int bt_left[] = {40, 41, 42, 43, 44, 45};
const int bt_right[] = {46, 47, 48, 49, 50, 51};
// Konstanten
const int mot_delay = 3; // Motor-Geschwindigkeit
const int mot_turn = 100; // Anzahl Schritte für eine 90 Grad Drehung
const int average_cnt = 20; // Anzahl der Werte füpr eine Durchschnittsberechnung
const char col_str[7][10] = {"yellow ",
"white ",
"orange ",
"red ",
"blue ",
"green ",
"?????? "};
// Globale Variablen
int cube[6][9]; // Speichermodell des Würfels mit allen Farben
//-----------------------------------------------------------------
// Setzt die Farben nach dem Einschalten des Systems
void init_cube_colors(){
for(int i = 0; i < 6; ++i) {
for(int j = 0; j < 9; ++j)
cube[i][j] = -1;
}
cube[0][8] = 5; // green (left)
cube[1][8] = 2; // orange (front)
cube[2][8] = 4; // blue (right)
cube[3][8] = 3; // red (back)
cube[4][8] = 0; // yellow (top)
cube[5][8] = 1; // white (bottom)
}
//-----------------------------------------------------------------
// Prints the colors from all sides of the cube
void print_cube_colors(void) {
Serial.println("Cube");
for(int i = 0; i < 6; ++i) {
Serial.print("Seite "); Serial.print(i); Serial.print(": ");
for(int j = 0; j < 9; ++j) {
if (cube[i][j] >= 0) Serial.print(col_str[i]);
else Serial.print("? ");
}
Serial.println();
}
}
//----------------------------------------------------------------
// Dreht einen Motor. Parameter:
// m -> Nummer des Motors (0 ... 5)
// cnt -> Anzahl der Schritte (100 entspricht 90 Grad)
// dir -> Laufrichtung links oder rechts (false oder true)
void run_motor(int m, int cnt, bool dir) {
digitalWrite(m_dir[m], dir); // Richtung setzen
digitalWrite(m_enable[m], LOW); // Motor einschalten
for (int i = 0; i < cnt; ++i) { // den Motor mit der Anzahl Schritte laufen lassen
digitalWrite(m_step[m], HIGH);
delay(mot_delay);
digitalWrite(m_step[m], LOW);
delay(mot_delay);
}
digitalWrite(m_enable[m], HIGH); // Motor ausschalten
}
//----------------------------------------------------------------
// Liest den Farbsensor "Edge" aus und lädt das Ergebnis in die drei Variablen
void get_col_edge(long *red, long *blue, long *green, long *white) {
*red = 0; *blue = 0; *green = 0; *white = 0;
// Der Sensor wird 20 mal gelesen. Dann werden die Mittelwerte berechnet
for (int i = 0; i < 20; ++i) {
digitalWrite(col_edge_s2, LOW);
digitalWrite(col_edge_s3, LOW);
delay(1);
*red += pulseIn(col_edge_out, LOW, 10000);
digitalWrite(col_edge_s3, HIGH);
delay(1);
*blue += pulseIn(col_edge_out, LOW, 10000);
digitalWrite(col_edge_s2, HIGH);
delay(1);
*green += pulseIn(col_edge_out, LOW, 10000);
digitalWrite(col_edge_s3, LOW);
delay(1);
*white += pulseIn(col_edge_out, LOW, 10000);
}
*white = (int) (*white / 20);
*red = (int) (*red / 20);
*blue = (int) (*blue / 20);
*green = (int) (*green / 20);
}
//----------------------------------------------------------------
// Liest den Farbsensor "Corner" aus und lädt das Ergebnis in die drei Variablen
void get_col_corner(long *red, long *blue, long *green, long *white) {
*red = 0; *blue = 0; *green = 0, *white=0;
// Der Sensor wird 20 mal gelesen. Dann werden die Mittelwerte berechnet
for (int i = 0; i < 20; ++i) {
digitalWrite(col_corner_s2, LOW);
digitalWrite(col_corner_s3, LOW);
delay(1);
*red += pulseIn(col_corner_out, LOW, 10000);
digitalWrite(col_corner_s3, HIGH);
delay(1);
*blue += pulseIn(col_corner_out, LOW, 10000);
digitalWrite(col_corner_s2, HIGH);
delay(1);
*green += pulseIn(col_corner_out, LOW, 10000);
digitalWrite(col_corner_s3, LOW);
delay(1);
*white += pulseIn(col_corner_out, LOW, 10000);
}
*red = (int) (*red / 20);
*blue = (int) (*blue / 20);
*green = (int) (*green / 20);
*white = (int) (*white / 20);
}
//----------------------------------------------------------------
// Decode color edge
// Diese Funktion findet die Farbe. Der Ausgabewert ist die Nummer der
// gefundenen Farbe (0 ... 5) oder 6, wenn keine passende Farbe gefunden
// werden konnte.
int decode_col_edge(void) {
// Tabelle mit den Grenzwerten
// red_min, red_max, blue_min, blue_max, green_min, green_max, white_min, white_max
const int col_tab[6][8] = {
220, 310, 405, 875, 340, 415, 23, 65, // yellow
260, 365, 370, 470, 400, 520, 30, 55, // white
160, 210, 400, 910, 430, 1010, 25, 60, // orange
130, 190, 305, 490, 320, 490, 30, 150, // red
165, 205, 250, 315, 305, 390, 36, 160, // blue
200, 285, 350, 540, 250, 330, 45, 100, // green
};
long red, blue, green, white;
int red_norm, blue_norm, green_norm;
double denominator;
int i;
// get the color values
get_col_edge(&red, &blue, &green, &white);
// caculate normalized color values
denominator = 0.02 * white * white + 5.0 * white;
red_norm = (int) ((red * 1000.0) / denominator);
blue_norm = (int) ((blue * 1000.0) / denominator);
green_norm = (int) ((green * 1000.0) / denominator);
// find matches
for (i = 0; i < 6; ++i) {
if ((red_norm >= col_tab[i][0]) && (red_norm <= col_tab[i][1]) &&
(blue_norm >= col_tab[i][2]) && (blue_norm <= col_tab[i][3]) &&
(green_norm >= col_tab[i][4]) && (green_norm <= col_tab[i][5]) &&
(white >= col_tab[i][6]) && (white <= col_tab[i][7])) {
break;
}
}
if (debug && (i > 5)) {
Serial.println();
Serial.print("=====> Undefined Edge ");
Serial.print("R "); print_dec(red_norm); Serial.print(",");
Serial.print(" B "); print_dec(blue_norm); Serial.print(",");
Serial.print(" G "); print_dec(green_norm); Serial.print(",");
Serial.print(" W "); print_dec(white);
Serial.println(" =================");
}
return i;
}
//----------------------------------------------------------------
// Decode color corner
// Diese Funktion findet die Farbe. Input sind die Sensor-Werte
// für rot, blau, grün und weiß.
// Der Ausgabewert ist die Nummer der gefundenen Farbe (0 ... 5) oder 6, wenn
// keine passende Farbe gefunden werden konnte.
int decode_col_corner(void) {
// Tabelle mit den Grenzwerten
// red_min, red_max, blue_min, blue_max, green_min, green_max, white_min, white_max
const int col_tab[6][8] = {
225, 300, 425, 870, 340, 415, 25, 65, // yellow
240, 365, 370, 505, 390, 540, 28, 60, // white
170, 255, 380, 915, 400, 1010, 25, 65, // orange
125, 185, 310, 490, 320, 500, 40, 165, // red
160, 190, 255, 309, 300, 390, 40, 180, // blue
200, 270, 320, 550, 220, 320, 35, 115, // green
};
long red, blue, green, white;
int red_norm, blue_norm, green_norm;
double denominator;
int i;
// get the color values
get_col_corner(&red, &blue, &green, &white);
// caculate normalized color values
denominator = 0.02 * white * white + 5.0 * white;
red_norm = (int) ((red * 1000.0) / denominator);
blue_norm = (int) ((blue * 1000.0) / denominator);
green_norm = (int) ((green * 1000.0) / denominator);
// find matches
for (i = 0; i < 6; ++i) {
if ((red_norm >= col_tab[i][0]) && (red_norm <= col_tab[i][1]) &&
(blue_norm >= col_tab[i][2]) && (blue_norm <= col_tab[i][3]) &&
(green_norm >= col_tab[i][4]) && (green_norm <= col_tab[i][5]) &&
(white >= col_tab[i][6]) && (white <= col_tab[i][7])) {
break;
}
}
if (debug && (i > 5)) {
Serial.println();
Serial.print("=====> Undefined Corner ");
Serial.print("R "); print_dec(red_norm); Serial.print(",");
Serial.print(" B "); print_dec(blue_norm); Serial.print(",");
Serial.print(" G "); print_dec(green_norm); Serial.print(",");
Serial.print(" W "); print_dec(white);
Serial.println(" =================");
}
return i;
}
//----------------------------------------------------------------
// Gibt eine Zahl mit führenden Leerzeichen (rechtsbündig) auf dem seriellen Monitor aus
void print_dec(int i) {
bool minus = false;
if (i < 0) {
minus = true;
i = -i;
}
if (i < 1000) Serial.print(' ');
if (i < 100) Serial.print(' ');
if (i < 10) Serial.print(' ');
if (minus) Serial.print('-');
else Serial.print(' ');
Serial.print(i);
}
//----------------------------------------------------------------
// Fragt die Tasten ab und dreht den Motor, wenn eine Taste gedrückt wurde.
bool check_buttons(void) {
bool button_pressed = false;
for (int i = 0; i < 6; ++i) {
if (digitalRead(bt_left[i]) == LOW) { // eine gedrückte Taste bedeutet "LOW"
Serial.print("Motor "); // Motordrehung auf dem seriellen Monitor anzeigen
Serial.print(i);
Serial.print(" links ... ");
run_motor(i, mot_turn, LOW); // Motor drehen lassen
Serial.println("fertig");
button_pressed = true;
while (digitalRead(bt_left[i]) == LOW); // warte, bis der Taster wieder losgelassen wurde
}
if (digitalRead(bt_right[i]) == LOW) { // dasselbe mit der anderen Tastenreihe
Serial.print("Motor ");
Serial.print(i);
Serial.print(" rechts ... ");
run_motor(i, mot_turn, HIGH);
Serial.println("fertig");
button_pressed = true;
while (digitalRead(bt_right[i]) == LOW); // warte, bis der Taster wieder losgelassen wurde
}
}
return button_pressed;
}
//----------------------------------------------------------------
void setup() {
Serial.begin(115200);
Serial.println("Zauberwürfel Test-Programm Version 0.7");
// set I/O pins
pinMode(col_edge_out, INPUT_PULLUP);
pinMode(col_edge_s2, OUTPUT);
pinMode(col_edge_s3, OUTPUT);
pinMode(col_corner_out, INPUT);
pinMode(col_corner_s2, OUTPUT);
pinMode(col_corner_s3, OUTPUT);
for (int i = 0; i < 6; ++i) {
pinMode(m_enable[i], OUTPUT);
pinMode(m_step[i], OUTPUT);
pinMode(m_dir[i], OUTPUT);
pinMode(bt_left[i], INPUT_PULLUP);
pinMode(bt_right[i], INPUT_PULLUP);
}
// disable the drives
for (int i = 0; i < 6; ++i) {
digitalWrite(m_enable[i], HIGH);
digitalWrite(m_step[i], LOW);
digitalWrite(m_dir[i], LOW);
}
init_cube_colors();
print_cube_colors();
}
//----------------------------------------------------------------
// Das ist das Hauptprogramm, von dem alles aufgerufen wird
//----------------------------------------------------------------
void loop() {
int color;
Serial.println();
for (int i = 0; i < 5; ++i) {
for (int j = 0; j < 10000; ++j) {
if (check_buttons()) break;
};
Serial.print("E: ");
color = decode_col_edge();
if (color > 5) while(1);
Serial.print(col_str[color]); Serial.print(" ");
for (int j = 0; j < 10000; ++j) {
if (check_buttons()) break;
};
Serial.print("C: ");
color = decode_col_corner();
if (color > 5) while(1);
Serial.print(col_str[color]); Serial.print(" ");
}
run_motor(3, 100, LOW); // Motor drehen lassen
run_motor(4, 100, HIGH); // Motor drehen lassen
run_motor(5, 100, LOW);
}