forked from microsoft/Xbox-ATG-Samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDolphin.cpp
149 lines (127 loc) · 5.9 KB
/
Dolphin.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
//--------------------------------------------------------------------------------------
// Dolphin.cpp
//
// Advanced Technology Group (ATG)
// Copyright (C) Microsoft Corporation. All rights reserved.
//--------------------------------------------------------------------------------------
#include "pch.h"
#include "Dolphin.h"
#include "ReadData.h"
using namespace DirectX;
Dolphin::Dolphin()
: m_world(XMMatrixIdentity())
, m_translation(0, 0, 0)
, m_animationTime(0)
, m_blendWeight(0)
, m_primitiveType(D3D11_PRIMITIVE_TOPOLOGY_UNDEFINED)
, m_vertexStride(0)
, m_indexCount(0)
, m_vertexFormat(DXGI_FORMAT_UNKNOWN)
{
m_animationTime = float(rand() % 100);
}
void Dolphin::Load(ID3D11Device *device, ID3D11DeviceContext *context, DirectX::EffectFactory *fxFactory)
{
std::unique_ptr<DirectX::Model> dolphinModel1 = Model::CreateFromSDKMESH(device, L"assets\\mesh\\Dolphin1.sdkmesh", *fxFactory);
std::unique_ptr<DirectX::Model> dolphinModel2 = Model::CreateFromSDKMESH(device, L"assets\\mesh\\Dolphin2.sdkmesh", *fxFactory);
std::unique_ptr<DirectX::Model> dolphinModel3 = Model::CreateFromSDKMESH(device, L"assets\\mesh\\Dolphin3.sdkmesh", *fxFactory);
fxFactory->CreateTexture(L"dolphin.bmp", context, m_textureView.ReleaseAndGetAddressOf());
{
auto& meshes = dolphinModel1->meshes;
auto& meshParts = meshes[0]->meshParts;
auto& part = *meshParts[0];
m_vb1 = part.vertexBuffer;
m_ib = part.indexBuffer;
m_primitiveType = part.primitiveType;
m_indexCount = part.indexCount;
m_vertexStride = part.vertexStride;
m_vertexFormat = part.indexFormat;
}
{
auto& meshes = dolphinModel2->meshes;
auto& meshParts = meshes[0]->meshParts;
auto& part = *meshParts[0];
m_vb2 = part.vertexBuffer;
}
{
auto& meshes = dolphinModel3->meshes;
auto& meshParts = meshes[0]->meshParts;
auto& part = *meshParts[0];
m_vb3 = part.vertexBuffer;
}
{
auto blob = DX::ReadData(L"DolphinVS.cso");
DX::ThrowIfFailed(device->CreateVertexShader(blob.data(), blob.size(), nullptr, m_vertexShader.ReleaseAndGetAddressOf()));
const D3D11_INPUT_ELEMENT_DESC layout[] =
{
{ "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "NORMAL", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 12, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, 24, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "POSITION", 1, DXGI_FORMAT_R32G32B32_FLOAT, 1, 0, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "NORMAL", 1, DXGI_FORMAT_R32G32B32_FLOAT, 1, 12, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "TEXCOORD", 1, DXGI_FORMAT_R32G32_FLOAT, 1, 24, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "POSITION", 2, DXGI_FORMAT_R32G32B32_FLOAT, 2, 0, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "NORMAL", 2, DXGI_FORMAT_R32G32B32_FLOAT, 2, 12, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "TEXCOORD", 2, DXGI_FORMAT_R32G32_FLOAT, 2, 24, D3D11_INPUT_PER_VERTEX_DATA, 0 },
};
DX::ThrowIfFailed(device->CreateInputLayout(layout, _countof(layout), blob.data(), blob.size(), m_vertexLayout.ReleaseAndGetAddressOf()));
}
}
void Dolphin::OnDeviceLost()
{
m_textureView.Reset();
m_vb1.Reset();
m_vb2.Reset();
m_vb3.Reset();
m_ib.Reset();
m_inputLayout.Reset();
m_vertexShader.Reset();
m_vertexLayout.Reset();
}
void Dolphin::Update(float, float elapsedTime)
{
// update the animation time for the dolphin
m_animationTime += elapsedTime;
// store the blend weight (this determines how fast the tale wags)
m_blendWeight = sinf(6 * m_animationTime);
// compute our rotation matrices and combine them with scale into our world matrix
m_world = XMMatrixScaling(0.01f, 0.01f, 0.01f);
// This rotation adds a little wiggle
m_world = XMMatrixMultiply(XMMatrixRotationZ(cos(4 * m_animationTime) / 6.0f), m_world);
// Translate and then rotate to make the dolphin swim in a circle
m_world = XMMatrixMultiply(m_world, XMMatrixTranslation(0.0f, 0.0f, 8.0f));
m_world = XMMatrixMultiply(m_world, XMMatrixRotationY(-m_animationTime / 2.0f));
// Perturb the dolphin's position in vertical direction so that it looks more "floaty"
m_world = XMMatrixMultiply(m_world, XMMatrixTranslation(0.0f, cos(4 * m_animationTime) / 3.0f, 0.0f));
}
void Dolphin::Render(ID3D11DeviceContext * d3dDeviceContext, ID3D11PixelShader * pixelShader, ID3D11ShaderResourceView * causticResourceView)
{
unsigned int DolphinStrides[3] = { m_vertexStride, m_vertexStride, m_vertexStride };
unsigned int DolphinOffsets[3] = { 0, 0, 0 };
ID3D11Buffer *dolphinVBs[3] = { m_vb1.Get(), m_vb2.Get(), m_vb3.Get() };
ID3D11ShaderResourceView *textureResourceView = m_textureView.Get();
d3dDeviceContext->IASetInputLayout(m_vertexLayout.Get());
d3dDeviceContext->IASetVertexBuffers(0, 3, dolphinVBs, DolphinStrides, DolphinOffsets);
d3dDeviceContext->IASetIndexBuffer(m_ib.Get(), m_vertexFormat, 0);
d3dDeviceContext->IASetPrimitiveTopology(m_primitiveType);
d3dDeviceContext->VSSetShader(m_vertexShader.Get(), NULL, 0);
d3dDeviceContext->GSSetShader(NULL, NULL, 0);
d3dDeviceContext->PSSetShader(pixelShader, NULL, 0);
d3dDeviceContext->PSSetShaderResources(0, 1, &textureResourceView);
d3dDeviceContext->PSSetShaderResources(1, 1, &causticResourceView);
d3dDeviceContext->DrawIndexed(m_indexCount, 0, 0);
}
void Dolphin::Translate(DirectX::XMVECTOR t)
{
m_translation = XMVectorAdd(m_translation, t);
}
DirectX::XMMATRIX Dolphin::GetWorld()
{
// combine our existing world matrix with the translation
XMMATRIX result = XMMatrixMultiply(m_world, XMMatrixTranslationFromVector(m_translation));
return result;
}
float Dolphin::GetBlendWeight()
{
return m_blendWeight;
}