-
Notifications
You must be signed in to change notification settings - Fork 66
/
Copy pathdataset.py
executable file
·70 lines (59 loc) · 2.37 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# Copyright 2021 Sony Group Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
import numpy as np
from nnabla.utils.data_source import DataSource
class VCTKDataSource(DataSource):
r""" Data source for the VCTK dataset."""
def __init__(self, metadata, hp, shuffle=False, rng=None):
if rng is None:
rng = np.random.RandomState(hp.seed)
super().__init__(shuffle=shuffle, rng=rng)
self._path = Path(hp.save_data_dir)
waves = list()
with open(self._path / metadata) as reader:
for line in reader:
data = line.strip()
waves.append(data)
# split data
n = len(waves)
index = self._rng.permutation(n) if shuffle else np.arange(n)
if hasattr(hp, 'comm'): # distributed learning
num = n // hp.comm.n_procs
index = index[num * hp.comm.rank:num * (hp.comm.rank + 1)]
self._waves = [waves[i] for i in index]
self._size = len(self._waves)
self._variables = ["wave", "speaker_id"]
self.hp = hp
self.reset()
def reset(self):
if self._shuffle:
self._indexes = self._rng.permutation(self._size)
else:
self._indexes = np.arange(self._size)
super().reset()
def _get_data(self, position):
r"""Return a tuple of data."""
index = self._indexes[position]
name = self._waves[index]
hp = self.hp
data = np.load(self._path / "data" / name)
w, label = data["wave"], data["speaker_id"]
w *= 0.99 / (np.max(np.abs(w)) + 1e-7)
if len(w) > hp.segment_length:
idx = self._rng.randint(0, len(w) - hp.segment_length)
w = w[idx:idx + hp.segment_length]
else:
w = np.pad(w, (0, hp.segment_length - len(w)), mode='constant')
return w[None, ...], [label]