forked from ikostrikov/pytorch-a2c-ppo-acktr-gail
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
executable file
·361 lines (306 loc) · 14.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
import copy
import glob
import os
import time
import datetime
import csv
from collections import deque
import gym
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from a2c_ppo_acktr import algo, utils
from a2c_ppo_acktr.algo import gail
from a2c_ppo_acktr.arguments import get_args
from a2c_ppo_acktr.envs import make_vec_envs
from a2c_ppo_acktr.model import Policy, TempoRLPolicy, Bandit_Policy
from a2c_ppo_acktr.storage import RolloutStorage, NoneConcatSkipReplayBuffer
from evaluation import evaluate
def main():
args = get_args()
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
if args.cuda and torch.cuda.is_available() and args.cuda_deterministic:
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
time_str = datetime.datetime.now().strftime('%Y%m%dT%H%M%S.%f')
monitor_dir = os.path.expanduser(args.log_dir) + '/' + args.env_name + '/' + args.algo
log_dir = monitor_dir + '/' + time_str
save_dir = monitor_dir + '/' + time_str + '/' + args.save_dir
eval_log_dir = monitor_dir + '/' + time_str + '/' + 'eval'
log_file_name = os.path.join(log_dir, "log.csv")
utils.cleanup_log_dir(monitor_dir)
utils.cleanup_log_dir(eval_log_dir)
torch.set_num_threads(1)
device = torch.device("cuda:0" if args.cuda else "cpu")
if args.algo == 'tempo_a2c':
action_repeat = True
else:
action_repeat = False
envs = make_vec_envs(args.env_name, args.seed, args.num_processes,
args.gamma, monitor_dir, device, False, None, action_repeat)
if args.algo == 'tempo_a2c':
actor_critic = TempoRLPolicy(
envs,
envs.observation_space.shape,
envs.action_space,
base_kwargs={'recurrent': args.recurrent_policy},
skip_dim = args.max_skip_dim)
else:
actor_critic = Policy(
envs.observation_space.shape,
envs.action_space,
base_kwargs={'recurrent': args.recurrent_policy})
actor_critic.to(device)
if args.algo == 'a2c':
agent = algo.A2C_ACKTR(
actor_critic,
args.value_loss_coef,
args.entropy_coef,
lr=args.lr,
eps=args.eps,
alpha=args.alpha,
max_grad_norm=args.max_grad_norm)
elif args.algo == 'ppo':
agent = algo.PPO(
actor_critic,
args.clip_param,
args.ppo_epoch,
args.num_mini_batch,
args.value_loss_coef,
args.entropy_coef,
lr=args.lr,
eps=args.eps,
max_grad_norm=args.max_grad_norm)
elif args.algo == 'b_a2c':
nbArms = args.nbArms
bandit_dim = args.bandit_dim
bandit = Bandit_Policy(
envs.observation_space.shape,
envs.action_space,
nbArms,
bandit_dim,
base_kwargs={'recurrent': args.recurrent_policy})
bandit.to(device)
agent = algo.Bandit_A2C_ACKTR(
actor_critic,
bandit,
args.value_loss_coef,
args.entropy_coef,
lr=args.lr,
eps=args.eps,
alpha=args.alpha,
max_grad_norm=args.max_grad_norm)
elif args.algo =='tempo_a2c':
agent = algo.A2C_ACKTR(
actor_critic,
args.value_loss_coef,
args.entropy_coef,
lr=args.lr,
eps=args.eps,
alpha=args.alpha,
max_grad_norm=args.max_grad_norm)
elif args.algo == 'acktr':
agent = algo.A2C_ACKTR(
actor_critic, args.value_loss_coef, args.entropy_coef, acktr=True)
if args.gail:
assert len(envs.observation_space.shape) == 1
discr = gail.Discriminator(
envs.observation_space.shape[0] + envs.action_space.shape[0], 100,
device)
file_name = os.path.join(
args.gail_experts_dir, "trajs_{}.pt".format(
args.env_name.split('-')[0].lower()))
expert_dataset = gail.ExpertDataset(
file_name, num_trajectories=4, subsample_frequency=20)
drop_last = len(expert_dataset) > args.gail_batch_size
gail_train_loader = torch.utils.data.DataLoader(
dataset=expert_dataset,
batch_size=args.gail_batch_size,
shuffle=True,
drop_last=drop_last)
rollouts = RolloutStorage(args.num_steps, args.num_processes,
envs.observation_space.shape, envs.action_space,
actor_critic.recurrent_hidden_state_size)
if args.algo == 'tempo_a2c':
skip_rollouts = NoneConcatSkipReplayBuffer(5e4)
# the skip policy uses epsilon greedy exploration for learning
initial_expl_noise = args.expl_noise
expl_noise = initial_expl_noise
obs = envs.reset()
rollouts.obs[0].copy_(obs)
rollouts.to(device)
episode_rewards = deque(maxlen=10)
start = time.time()
num_updates = int(
args.num_env_steps) // args.num_steps // args.num_processes
log_file = open(log_file_name,'a', newline='')
log_file_wr = csv.writer(log_file)
log_file_wr.writerow(['Updates', 'total_num_steps', 'Last 10 mean_episode_rewards', 'Avg_skips'])
for j in range(num_updates):
skip_l = []
if args.use_linear_lr_decay:
# decrease learning rate linearly
utils.update_linear_schedule(
agent.optimizer, j, num_updates,
agent.optimizer.lr if args.algo == "acktr" else args.lr)
# t = np.zeros((envs.num_envs,))
curr_skip = np.array([0 for _ in range(envs.num_envs)])
skip_graphs = dict()
for i in range(envs.num_envs): # initialize dict
skip_graphs[i] = {'skip_states': [], 'skip_rewards': []}# only used for TempoRL to build the local conectedness graph
repeats = None
act_continue = None
for step in range(args.num_steps):
# Sample actions
with torch.no_grad():
value, action, action_log_prob, recurrent_hidden_states = actor_critic.act(
rollouts.obs[step], rollouts.recurrent_hidden_states[step],
rollouts.masks[step])
if args.algo == 'tempo_a2c':
if np.random.random() < expl_noise:
repeat = np.random.randint(args.max_skip_dim, size=envs.num_envs) # + 1 sonce randint samples from [0, max_rep)
# t += repeat
else:
# print(obs.shape)
repeat = np.argmax(actor_critic.get_skip(obs, action), axis=1)
# t += repeat
if repeats is not None: # previous repeat exists
finisehd_repeat = repeats < 0
curr_skip += 1
for idx, finished in enumerate(finisehd_repeat):
if finished or done[idx]:
curr_skip[idx] = 0
repeats[idx] = repeat[idx]
act_continue[idx] = action[idx]
# repeats = np.array([repeat[idx] if finished else repeats[idx] for idx, finished in enumerate(finisehd_repeat)])
# act_continue = torch.tensor([action[idx] if finished else act_continue[idx] for idx, finished in enumerate(finisehd_repeat)]).reshape(-1,1).to(device)
else:
act_continue = action
repeats = repeat
skip_l.append(np.mean(repeats))
if args.algo == 'b_a2c':
skips = bandit.get_skip(rollouts.obs[step], rollouts.recurrent_hidden_states[step],
rollouts.masks[step], action, args.num_processes)
# Obser reward and next obs
if args.algo == 'tempo_a2c':
prev_obs = obs
# print(torch.eq(act_continue, action)) # for sanity check
# aug_action = torch.cat((action, torch.from_numpy(repeat.reshape(-1,1)).to(device)), dim=1)
# Perform action
obs, reward, done, infos = envs.step(act_continue)
repeats -= 1
for i in range(envs.num_envs):
skip_graphs[i]['skip_states'].append(prev_obs[i][:])
skip_graphs[i]['skip_rewards'].append(reward[i][:])
# print(obs.shape)
# print(reward, reward.shape)
# Update the skip replay buffer with all observed skips.
for k in skip_graphs.keys():
skip_id = 0
for start_state in skip_graphs[k]['skip_states']:
skip_reward = 0
for exp, r in enumerate(skip_graphs[k]['skip_rewards'][skip_id:]):
skip_reward += np.power(args.gamma, exp) * r
skip_rollouts.add_transition(start_state.cpu().numpy(), curr_skip[k] - skip_id, obs[k].cpu().numpy(),
skip_reward.cpu().numpy(), done[k], curr_skip[k] - skip_id + 1,
act_continue.cpu().numpy()[k])
for info in infos:
if 'episode' in info.keys():
episode_rewards.append(info['episode']['r'])
# If done then clean the history of observations.
masks = torch.FloatTensor(
[[0.0] if done_ else [1.0] for done_ in done])
bad_masks = torch.FloatTensor(
[[0.0] if 'bad_transition' in info.keys() else [1.0]
for info in infos])
# Insert repeated rollout trajectories
rollouts.insert(obs, recurrent_hidden_states, act_continue,
action_log_prob, value, reward, masks, bad_masks)
else:
# Obser reward and next obs
obs, reward, done, infos = envs.step(action)
for info in infos:
if 'episode' in info.keys():
episode_rewards.append(info['episode']['r'])
# If done then clean the history of observations.
masks = torch.FloatTensor(
[[0.0] if done_ else [1.0] for done_ in done])
bad_masks = torch.FloatTensor(
[[0.0] if 'bad_transition' in info.keys() else [1.0]
for info in infos])
rollouts.insert(obs, recurrent_hidden_states, action,
action_log_prob, value, reward, masks, bad_masks)
with torch.no_grad():
next_value = actor_critic.get_value(
rollouts.obs[-1], rollouts.recurrent_hidden_states[-1],
rollouts.masks[-1]).detach()
if args.gail:
if j >= 10:
envs.venv.eval()
gail_epoch = args.gail_epoch
if j < 10:
gail_epoch = 100 # Warm up
for _ in range(gail_epoch):
discr.update(gail_train_loader, rollouts,
utils.get_vec_normalize(envs)._obfilt)
for step in range(args.num_steps):
rollouts.rewards[step] = discr.predict_reward(
rollouts.obs[step], rollouts.actions[step], args.gamma,
rollouts.masks[step])
if args.algo == 'tempo_a2c':
# Update the skip buffer with all observed transitions in the local connectedness graph
batch_states, batch_actions, batch_next_states, batch_rewards,\
batch_terminal_flags, batch_lengths, batch_behaviours = \
skip_rollouts.random_next_batch(args.tempo_batch_size)
target = batch_rewards.squeeze() + (1 - batch_terminal_flags) * torch.pow(batch_lengths, args.gamma) * \
actor_critic.get_value(batch_next_states, False, None)[torch.arange(args.tempo_batch_size).long(), torch.argmax(
actor_critic.get_value(batch_next_states, False, None), dim=1)]
current_prediction = actor_critic.skip_Q(batch_states, batch_behaviours)[
torch.arange(args.tempo_batch_size).long(), batch_actions.long()]
loss = actor_critic.skip_loss_function(current_prediction, target.detach())
loss.backward()
actor_critic.skip_optimizer.step()
rollouts.compute_returns(next_value, args.use_gae, args.gamma,
args.gae_lambda, args.use_proper_time_limits)
value_loss, action_loss, dist_entropy = agent.update(rollouts)
rollouts.after_update()
# save for every interval-th episode or for the last epoch
if (j % args.save_interval == 0
or j == num_updates - 1) and args.save_dir != "":
save_path = save_dir
try:
os.makedirs(save_path)
except OSError:
pass
torch.save([
actor_critic,
getattr(utils.get_vec_normalize(envs), 'obs_rms', None)
], os.path.join(save_path, args.env_name + ".pt"))
if j % args.log_interval == 0 and len(episode_rewards) > 1:
total_num_steps = (j + 1) * args.num_processes * args.num_steps
print(f"mean extension {skip_l[0]+1}, epsilon: {expl_noise}")
# epsilon decay
if args.algo == 'tempo_a2c':
expl_noise = max(0.01, initial_expl_noise - (initial_expl_noise * (total_num_steps/200000)))
end = time.time()
print("Updates {}, num timesteps {}, FPS {} \n Last {} training episodes: mean/median reward {:.1f}/{:.1f}, min/max reward {:.1f}/{:.1f}\n"\
.format(j, total_num_steps,
int(total_num_steps / (end - start)),
len(episode_rewards), np.mean(episode_rewards),
np.median(episode_rewards), np.min(episode_rewards),
np.max(episode_rewards), dist_entropy, value_loss,
action_loss))
log_file = open(log_file_name,'a', newline='')
log_file_wr = csv.writer(log_file)
log_file_wr.writerow([j, total_num_steps, np.round(np.mean(episode_rewards), 1), np.round(np.mean(skip_l)+1, 1)])
log_file.close()
if (args.eval_interval is not None and len(episode_rewards) > 1
and j % args.eval_interval == 0):
obs_rms = utils.get_vec_normalize(envs).obs_rms
evaluate(actor_critic, obs_rms, args.env_name, args.seed,
args.num_processes, eval_log_dir, device)
if __name__ == "__main__":
main()