-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
368 lines (299 loc) · 16.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import os
import time
import argparse
import configparser
import numpy as np
import torch
import torch.nn as nn
import tqdm
from engine import trainer
from utils import *
import ast
DATASET = 'COVID_JHU' # COVID Time-Series Dataset from John Hopkins University
# DATASET = 'COVID_NYT' # COVID Time-Series Dataset from New York Times
config_file = './config/{}.conf'.format(DATASET)
config = configparser.ConfigParser()
config.read(config_file)
parser = argparse.ArgumentParser(description='arguments')
parser.add_argument('--no_cuda', action="store_true", help="NO GPU")
parser.add_argument('--data', type=str, default=config['data']['data'], help='data path')
parser.add_argument('--sensors_distance', type=str, default=config['data']['sensors_distance'],
help='Node Distance File')
parser.add_argument('--batch_size', type=int, default=config['data']['batch_size'],
help="Training Batch Size")
parser.add_argument('--valid_batch_size', type=int, default=config['data']['valid_batch_size'],
help="Validation Batch Size")
parser.add_argument('--test_batch_size', type=int, default=config['test']['test_batch_size'],
help="Test Batch Size")
parser.add_argument('--fill_zeros', type=eval, default=config['data']['fill_zeros'],
help="whether to fill zeros in data with average")
parser.add_argument('--num_of_vertices', type=int, default=config['model']['num_of_vertices'],
help='Number of sensors')
parser.add_argument('--in_dim', type=int, default=config['model']['in_dim'], help='input dimension')
parser.add_argument('--hidden_dims', type=list, default=ast.literal_eval(config['model']['hidden_dims']),
help='Convolution operation dimension of each STSGCL layer in the middle')
parser.add_argument('--first_layer_embedding_size', type=int,
default=config['model']['first_layer_embedding_size'],
help='The dimension of the first input layer')
parser.add_argument('--out_layer_dim', type=int, default=config['model']['out_layer_dim'],
help='Output module middle layer dimension')
parser.add_argument('--d_model', type=int, default=config['model']['d_model'],
help='Embedding dimension for the ST Synchronous Transformer')
parser.add_argument('--n_heads', type=int, default=config['model']['n_heads'],
help='Number of heads for the Multi-Head Attention')
parser.add_argument('--dropout', type=float, default=config['model']['dropout'],
help='dropout for the ST Synchronous Transformer')
parser.add_argument('--forward_expansion', type=int, default=config['model']['forward_expansion'],
help='Hidden Layer Dimension for the ST Synchronous Transformer')
parser.add_argument("--history", type=int, default=config['model']['history'],
help="The discrete time series of each sample input")
parser.add_argument("--horizon", type=int, default=config['model']['horizon'],
help="The discrete time series of each sample output (forecast)")
parser.add_argument("--strides", type=int, default=config['model']['strides'],
help="The step size of the sliding window, "
"the local spatio-temporal graph is constructed using several time steps, "
"the default is 3")
parser.add_argument("--temporal_emb", type=eval, default=config['model']['temporal_emb'],
help="Whether to use temporal embedding vector")
parser.add_argument("--spatial_emb", type=eval, default=config['model']['spatial_emb'],
help="Whether to use spatial embedding vector")
parser.add_argument("--use_transformer", type=eval, default=config['model']['use_transformer'],
help="Whether to use the Spatio-Temporal Transformer or not")
parser.add_argument("--use_informer", type=eval, default=config['model']['use_informer'],
help="Whether to use the Spatio-Temporal Informer or not")
parser.add_argument("--factor", type=int, default=config['model']['factor'],
help="The amount of self-attentions needed")
parser.add_argument("--attention_dropout", type=float, default=config['model']['attention_dropout'],
help="The amount of dropout for sparse self-attentions")
parser.add_argument("--output_attention", type=eval, default=config['model']['output_attention'],
help="Whether to output the self-attentions or not")
parser.add_argument("--use_mask", type=eval, default=config['model']['use_mask'],
help="Whether to use the mask matrix to optimize adj")
parser.add_argument("--activation", type=str, default=config['model']['activation'],
help="Activation Function {ReLU, GLU}")
parser.add_argument('--seed', type=int, default=config['train']['seed'], help='Seed Settings')
parser.add_argument("--learning_rate", type=float, default=config['train']['learning_rate'],
help="Initial Learning Rate")
parser.add_argument("--weight_decay", type=float, default=config['train']['weight_decay'],
help="Weight Decay Rate")
parser.add_argument("--lr_decay", type=eval, default=config['train']['lr_decay'],
help="Whether to enable the initial learning rate decay strategy")
parser.add_argument("--lr_decay_rate", type=float, default=config['train']['lr_decay_rate'],
help="Learning rate decay rate")
parser.add_argument('--epochs', type=int, default=config['train']['epochs'],
help="Number of training epochs")
parser.add_argument('--print_every', type=int, default=config['train']['print_every'],
help='Print losses and metrics after print_every iterations')
parser.add_argument('--save', type=str, default=config['train']['save'], help='Save Path')
parser.add_argument('--save_loss', type=str, default=config['train']['save_loss'], help='Save Loss Path')
parser.add_argument('--expid', type=int, default=config['train']['expid'], help='Experiment ID')
parser.add_argument('--max_grad_norm', type=float, default=config['train']['max_grad_norm'],
help="Gradient Threshold")
parser.add_argument('--patience', type=int, default=config['train']['patience'],
help='Patience during training')
parser.add_argument('--log_file', default=config['train']['log_file'], help='log file')
args = parser.parse_args()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
log = open(args.log_file, 'w')
log_string(log, str(args))
def main():
# load data
adj = get_adjacency_matrix(distance_df_filename=args.sensors_distance)
# local_adj is only required for synchronous adjacency matrix - for STSI/STST/STSGT (our model) ONLY
local_adj = construct_adj(A=adj, steps=args.strides)
local_adj = torch.FloatTensor(local_adj)
dataloader = load_dataset(dataset_dir=args.data,
batch_size=args.batch_size,
valid_batch_size=args.valid_batch_size,
test_batch_size=args.test_batch_size,
fill_zeros=args.fill_zeros
)
scaler = dataloader['scaler']
log_string(log, 'Loading Data ...')
log_string(log, "The shape of original spatial adjacency matrix: {}".format(adj.shape))
log_string(log, f'x_train: {torch.tensor(dataloader["train_loader"].xs).shape}\t\t '
f'y_train: {torch.tensor(dataloader["train_loader"].ys).shape}')
log_string(log, f'x_val: {torch.tensor(dataloader["val_loader"].xs).shape}\t\t'
f'y_val: {torch.tensor(dataloader["val_loader"].ys).shape}')
log_string(log, f'x_test: {torch.tensor(dataloader["test_loader"].xs).shape}\t\t'
f'y_test: {torch.tensor(dataloader["test_loader"].ys).shape}')
log_string(log, f'mean: {scaler.mean:.4f}\t\tstd: {scaler.std:.4f}')
log_string(log, 'Data Loaded !!')
engine = trainer(scaler=scaler,
adj=local_adj,
history=args.history,
num_of_vertices=args.num_of_vertices,
in_dim=args.in_dim,
hidden_dims=args.hidden_dims,
first_layer_embedding_size=args.first_layer_embedding_size,
out_layer_dim=args.out_layer_dim,
d_model=args.d_model,
n_heads=args.n_heads,
factor=args.factor,
attention_dropout=args.attention_dropout,
output_attention=args.output_attention,
dropout=args.dropout,
forward_expansion=args.forward_expansion,
log=log,
lrate=args.learning_rate,
w_decay=args.weight_decay,
l_decay_rate=args.lr_decay_rate,
device=device,
activation=args.activation,
use_mask=args.use_mask,
max_grad_norm=args.max_grad_norm,
lr_decay=args.lr_decay,
temporal_emb=args.temporal_emb,
spatial_emb=args.spatial_emb,
use_transformer=args.use_transformer,
use_informer=args.use_informer,
horizon=args.horizon,
strides=args.strides)
# Start Training
if args.use_informer:
log_string(log, 'Using Spatio-Temporal Synchronous Informer\'s Prob-sparse Self-Attention ...')
else:
log_string(log, 'Using Spatio-Temporal Synchronous Transformer\'s Full Self-Attention ...')
log_string(log, 'Training Model ...')
his_loss = []
val_time = []
train_time = []
wait = 0
val_mae_min = float('inf')
best_model_wts = None
train_loss = []
train_mae = []
train_rmse = []
train_rmsle = []
valid_loss = []
valid_mae = []
valid_rmse = []
valid_rmsle = []
for i in tqdm.tqdm(range(1, args.epochs + 1)):
if wait >= args.patience:
log_string(log, f'early stop at epoch: {i:04d}')
break
train_loss.clear()
train_mae.clear()
train_rmse.clear()
train_rmsle.clear()
t1 = time.time()
dataloader['train_loader'].shuffle()
for ix, (x, y) in enumerate(dataloader['train_loader'].get_iterator()):
x_train = torch.Tensor(x).to(device) # [B, T, N, C]
# print("Train Data Batch Size: ", x_train.shape)
y_train = torch.Tensor(y[:, :, :, 0]).to(device) # [B, T, N]
# print("YTrain Label Batch Size: ", y_train.shape)
loss, tmae, trmse, trmsle = engine.train_model(x_train, y_train)
train_loss.append(loss)
train_mae.append(tmae)
train_rmse.append(trmse)
train_rmsle.append(trmsle)
if ix % args.print_every == 0:
logs = 'Iter: {:03d}, Train Loss: {:.4f}, Train MAE: {:.4f}, ' \
'Train RMSE: {:.4f}, Train RMSLE: {:.4f}, lr: {}'
print(logs.format(ix, train_loss[-1], train_mae[-1], train_rmse[-1], train_rmsle[-1],
engine.optimizer.param_groups[0]['lr']), flush=True)
if args.lr_decay:
engine.lr_scheduler.step()
t2 = time.time()
train_time.append(t2 - t1)
valid_loss.clear()
valid_mae.clear()
valid_rmse.clear()
valid_rmsle.clear()
s1 = time.time()
for ix, (x, y) in enumerate(dataloader['val_loader'].get_iterator()):
x_val = torch.Tensor(x).to(device) # [B, T, N, C]
# print("Val Data Batch Size: ", x_val.shape)
y_val = torch.Tensor(y[:, :, :, 0]).to(device) # [B, T, N]
# print("Val Label Batch Size: ", y_val.shape)
vloss, vmae, vrmse, vrmsle = engine.eval_model(x_val, y_val)
valid_loss.append(vloss)
valid_mae.append(vmae)
valid_rmse.append(vrmse)
valid_rmsle.append(vrmsle)
s2 = time.time()
logs = 'Epoch: {:03d}, Inference Time: {:.4f} secs'
log_string(log, logs.format(i, (s2-s1)))
val_time.append(s2 - s1)
mtrain_loss = np.mean(train_loss)
mtrain_mae = np.mean(train_mae)
mtrain_rmse = np.mean(train_rmse)
mtrain_rmsle = np.mean(train_rmsle)
mvalid_loss = np.mean(valid_loss)
mvalid_mae = np.mean(valid_mae)
mvalid_rmse = np.mean(valid_rmse)
mvalid_rmsle = np.mean(valid_rmsle)
his_loss.append(mvalid_loss)
logs = 'Epoch: {:03d}, Train Loss: {:.4f}, Train MAE {:.4f}, ' \
'Train RMSE: {:.4f}, Train RMSLE: {:.4f}, Valid Loss: {:.4f}, Valid MAE: {:.4f}, ' \
'Valid RMSE: {:.4f}, Valid RMSLE: {:.4f}, Training Time: {:.4f}/epoch'
log_string(log, logs.format(i, mtrain_loss, mtrain_mae, mtrain_rmse,
mtrain_rmsle, mvalid_loss, mvalid_mae,
mvalid_rmse, mvalid_rmsle, (t2 - t1)))
if not os.path.exists(args.save):
os.makedirs(args.save)
if val_mae_min >= mvalid_mae > 0:
log_string(
log,
f'Validation MAE decreases from {val_mae_min:.4f} to {mvalid_mae:.4f}, '
f'save model to '
f'{args.save + "exp_" + str(args.expid) + "_" + str(round(mvalid_mae, 2)) + "_best_model.pth"}'
)
wait = 0
val_mae_min = mvalid_mae
best_model_wts = engine.model.state_dict()
torch.save(best_model_wts,
args.save + "exp_" + str(args.expid) + "_" + str(round(val_mae_min, 2)) + "_best_model.pth")
else:
wait += 1
np.save(f'{args.save_loss}' + 'history_loss' + f'_{args.expid}', his_loss)
log_string(log, 'Training Completed ...')
log_string(log, "The Validation MAE of the best model is " + str(round(val_mae_min, 2)))
log_string(log, "Average Training Time: {:.4f} secs/epoch".format(np.mean(train_time)))
log_string(log, "Average Inference Time: {:.4f} secs".format(np.mean(val_time)))
# Test
log_string(log, 'Testing Model ...')
engine.model.load_state_dict(
torch.load(args.save + "exp_" + str(args.expid) + "_" + str(round(val_mae_min, 2)) + "_best_model.pth"))
outputs = []
y_real = torch.Tensor(dataloader['y_test'][:, :, :, 0]).to(device) # (no_test_samples, T, N)
# print("y_real shape: ", y_real.shape)
for ix, (x, y) in tqdm.tqdm(enumerate(dataloader['test_loader'].get_iterator())):
x_test = torch.Tensor(x).to(device) # [B, T, N, C]
# print("TestX shape: ", x_test.shape)
with torch.no_grad():
y_pred = engine.model(x_test) # [B, T, N] - For our STSI, GraphWaveNet, ASTGCN-r, STTN
# y_pred = engine.model(local_adj, x_test) # [B, T, N] - For STGCN model ONLY
# print("y_pred shape: ", y_pred.shape)
outputs.append(y_pred)
y_hat = torch.cat(outputs, dim=0) # [B, T, N]
# print("y_hat shape: ", y_hat.shape)
# The following is done because when you are doing batch,
# you can pad out a new sample to meet the batch_size requirements
# y_hat = y_hat[:y_real.size(0), ...] # [B, T, N]
y_real = y_real[:y_hat.size(0), ...] # [B, T, N]
# print("y_real shape: ", y_real.shape)
amae = []
armse = []
armsle = []
for t in range(args.horizon):
pred = scaler.inverse_transform(y_hat[:, t, :])
real = y_real[:, t, :]
mae, rmse, rmsle = metric(pred, real)
logs = 'The best model on the test set for horizon: {:d}, ' \
'Test MAE: {:.4f}, Test RMSE: {:.4f}, Test RMSLE: {:.4f}'
log_string(log, logs.format(t+1, mae, rmse, rmsle))
amae.append(mae)
armse.append(rmse)
armsle.append(rmsle)
logs = 'On average over 12 horizons, Test MAE: {:.4f}, Test RMSE: {:.4f}, Test RMSLE: {:.4f}'
log_string(log, logs.format(np.mean(amae), np.mean(armse), np.mean(armsle)))
log_string(log, 'Testing Completed ...')
if __name__ == '__main__':
start = time.time()
main()
end = time.time()
log_string(log, 'total time: %.2fhours' % ((end - start) / 3600))
log.close()