-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathRANSACTrifocal.m
100 lines (83 loc) · 3.67 KB
/
RANSACTrifocal.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
function [Tfinal, matcheper, m, m1 ] = RANSACTrifocal( vpts1, vpts2, vpts3, matchedTriplets )
%Computing the estimated Trifocal tensor using matches1 and matches2
matcheper = 0;
iter = 0;
Tfinal = 0;
m = struct;
m1 = struct;
while matcheper<0.85 && iter<6000,
iter = iter+1;
%iter
idx = randi([1, size(matchedTriplets,1)], 6, 1);
m(1).a1 = [vpts1(matchedTriplets(idx(1),1)).Location'; 1];
m(1).a2 = [vpts2(matchedTriplets(idx(1),2)).Location'; 1];
m(1).a3 = [vpts3(matchedTriplets(idx(1),3)).Location'; 1];
m(2).a1 = [vpts1(matchedTriplets(idx(2),1)).Location'; 1];
m(2).a2 = [vpts2(matchedTriplets(idx(2),2)).Location'; 1];
m(2).a3 = [vpts3(matchedTriplets(idx(2),3)).Location'; 1];
m(3).a1 = [vpts1(matchedTriplets(idx(3),1)).Location'; 1];
m(3).a2 = [vpts2(matchedTriplets(idx(3),2)).Location'; 1];
m(3).a3 = [vpts3(matchedTriplets(idx(3),3)).Location'; 1];
m(4).a1 = [vpts1(matchedTriplets(idx(4),1)).Location'; 1];
m(4).a2 = [vpts2(matchedTriplets(idx(4),2)).Location'; 1];
m(4).a3 = [vpts3(matchedTriplets(idx(4),3)).Location'; 1];
m(5).a1 = [vpts1(matchedTriplets(idx(5),1)).Location'; 1];
m(5).a2 = [vpts2(matchedTriplets(idx(5),2)).Location'; 1];
m(5).a3 = [vpts3(matchedTriplets(idx(5),3)).Location'; 1];
m(6).a1 = [vpts1(matchedTriplets(idx(6),1)).Location'; 1];
m(6).a2 = [vpts2(matchedTriplets(idx(6),2)).Location'; 1];
m(6).a3 = [vpts3(matchedTriplets(idx(6),3)).Location'; 1];
lamb1 = ([m(1).a1, m(2).a1, m(3).a1]);
lambda1 = lamb1\m(4).a1;
lamb2 = ([m(1).a2, m(2).a2, m(3).a2]);
lambda2 = lamb2\m(4).a2;
lamb3 = ([m(1).a3, m(2).a3, m(3).a3]);
lambda3 = lamb3\m(4).a3;
B1 = ([lambda1(1)*m(1).a1, lambda1(2)*m(2).a1, lambda1(3)*m(3).a1]);
B2 = ([lambda2(1)*m(1).a2, lambda2(2)*m(2).a2, lambda2(3)*m(3).a2]);
B3 = ([lambda3(1)*m(1).a3, lambda3(2)*m(2).a3, lambda3(3)*m(3).a3]);
w1 = int16(1);
w2 = int16(1);
w3 = int16(1);
w4 = int16(1);
w5 = int16(1);
w6 = int16(1);
% These conditions ensure that a poor choice of points are not selected
% to compute the Trifocal Tensor. The check is based on the condition
% number of the matrices involved in computing the trifocal tensor
if(rcond(lamb1) < 0.0000001 || isnan(rcond(lamb1)))
w1 = int16(0);
end;
if(rcond(lamb2) < 0.0000001 || isnan(rcond(lamb2)))
w2 = int16(0);
end;
if(rcond(lamb3) < 0.0000001 || isnan(rcond(lamb3)))
w3 = int16(0);
end;
if(rcond(B1) < 0.0000001 || isnan(rcond(B1)))
w4 = int16(0);
end;
if(rcond(B2) < 0.0000001 || isnan(rcond(B2)))
w5 = int16(0);
end;
if(rcond(B3) < 0.0000001 || isnan(rcond(B3)))
w6 = int16(0);
end;
% Only if the above conditions are not violated, proceed ahaed.
% Otherwise ignore this set of points
if(w1 && w2 && w3 && w4 && w5 && w6)
Tri = getTrifocal(m(1), m(2), m(3), m(4), m(5), m(6));
matcheper1 = getErrorTrifocal(vpts1, vpts2, vpts3, matchedTriplets, Tri);
iter = iter + 1;
if(matcheper1 > matcheper)
Tfinal = Tri;
matcheper = matcheper1;
end;
if(matcheper < 0.85 && matcheper > 0.70)
m1 = m;
end;
%matcheper
end;
fprintf('Iteration: %d Best percentage: %f\n', iter,matcheper);
end;
end