We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
I run: export CUDA_VISIBLE_DEVICES='0,1,2,3,4,5,6,7' task=gene datadir=data/$task outdir=runs/$task/GPT2 name=gene0913 checkpoint=/root/siton-glusterfs-eaxtsxdfs/xts/data/BioMedLM python -m torch.distributed.launch --nproc_per_node=8 --nnodes=1 --node_rank=0 --use_env run_seqcls_gpt.py --tokenizer_name $checkpoint --model_name_or_path $checkpoint --train_file $datadir/train.json --validation_file $datadir/dev.json --test_file $datadir/test.json --do_train --do_eval --do_predict --per_device_train_batch_size 1 --per_device_eval_batch_size 1 --gradient_accumulation_steps 1 --learning_rate 2e-6 --warmup_ratio 0.5 --num_train_epochs 5 --max_seq_length 32 --logging_steps 1 --save_strategy no --evaluation_strategy no --output_dir $outdir --overwrite_output_dir --bf16 --seed 1000 --run_name %name
but still get CUDA out of memory. Anyone know to finetune seqcls how many GPUs must be need?
The text was updated successfully, but these errors were encountered:
No branches or pull requests
I run:
export CUDA_VISIBLE_DEVICES='0,1,2,3,4,5,6,7'
task=gene
datadir=data/$task
outdir=runs/$task/GPT2
name=gene0913
checkpoint=/root/siton-glusterfs-eaxtsxdfs/xts/data/BioMedLM
python -m torch.distributed.launch --nproc_per_node=8 --nnodes=1 --node_rank=0 --use_env run_seqcls_gpt.py
--tokenizer_name $checkpoint --model_name_or_path $checkpoint --train_file
$datadir/train.json --validation_file $datadir/dev.json --test_file $datadir/test.json --do_train
--do_eval --do_predict --per_device_train_batch_size 1 --per_device_eval_batch_size 1 --gradient_accumulation_steps 1
--learning_rate 2e-6 --warmup_ratio 0.5 --num_train_epochs 5 --max_seq_length
32 --logging_steps 1 --save_strategy no --evaluation_strategy no --output_dir
$outdir --overwrite_output_dir --bf16 --seed 1000 --run_name %name
but still get CUDA out of memory.
Anyone know to finetune seqcls how many GPUs must be need?
The text was updated successfully, but these errors were encountered: