-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathstrings.c
592 lines (556 loc) · 20.6 KB
/
strings.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
/*
** This file is part of the Matrix Brandy Basic VI Interpreter.
** Copyright (C) 2000-2014 David Daniels
** Copyright (C) 2018-2024 Michael McConnell and contributors
**
** Brandy is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2, or (at your option)
** any later version.
**
** Brandy is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with Brandy; see the file COPYING. If not, write to
** the Free Software Foundation, 59 Temple Place - Suite 330,
** Boston, MA 02111-1307, USA.
**
**
** This file defines the functions and so forth associated with
** memory manangement for strings
*/
#include <string.h>
#include <stdlib.h>
#include "common.h"
#include "target.h"
#include "basicdefs.h"
#include "strings.h"
#include "heap.h"
#include "errors.h"
/* #define DEBUG */
#ifdef DEBUG
#include <stdio.h>
#endif
/*
** The string memory management is based around a series of 'bins' in which
** are kept free strings of different lengths, a bin for each length. There
** are bins for string lengths ranging from four to 64K bytes. The array
** 'binsizes' gives the string lengths for each bin. The emphasis is on
** dealing with short strings (up to 128 bytes) with about two thirds of
** the bins being for short strings. There is no reason why the number of
** bins could not be increased to improve memory usage nor why the maximum
** length string could be set higher. (The only problem here is that the
** interpreter uses a string workspace of the maximum string length and
** increasing the maximum beyond, say, a megabyte, would probably be
** impractical.
** The allocation strategy is as follows:
** 1) Search the bin for a string of the required size
** 2) If the bin is empty acquire a block directly from the Basic heap.
** 3) If that fails then search the free string list and use the first
** one that fits. The unused potion of the block is returned to
** either one of the bins or the free string list, depending on its
** size.
** 4) If nothing can be found in step 3), try to merge free blocks
** and start again from step 1).
** 5) If there is still nothing available give up.
** (Actually it would be possible to check one more place to see
** if there is any memory left. The bins for longer string sizes
** could be checked but if steps 1) to 4) fail to produce anything
** it seems unlikely that this will.)
**
** In this module, string lengths are referred to by the number of the bin
** that corresponds to that length.
*/
#define SHORTLIMIT 256 /* Largest 'short' string */
#define MEDLIMIT 2048 /* Largest 'medium' string */
#define SHORTGRAIN 8 /* Difference between each 'short' string length */
#define MEDGRAIN 256 /* Difference between each 'medium' string length */
#define SHORTBINS ((SHORTLIMIT/SHORTGRAIN)+1) /* Number of bins for short strings (+1 as range is 0..256) */
#define MEDSTART SHORTBINS /* Index of first 'medium' bin entry */
#define MEDBINS ((MEDLIMIT/MEDGRAIN)-1) /* Number of bins for medium strings (-1 as range is 512..2048) */
#define LONGSTART (SHORTBINS+MEDBINS) /* Index of first 'long' bin entry */
#define BINCOUNT 46 /* Number of bins */
typedef struct heapblock {
struct heapblock *blockflink; /* Next block in list */
int32 blocksize; /* Size of heap block (Use only in free list) */
} heapblock;
typedef struct {
heapblock *freestart; /* Address of a free string */
int32 freesize; /* Size of free string */
} freeblock;
#ifdef DEBUG
static int32 allocated; /* Number of bytes allocated */
static int32 created[BINCOUNT]; /* Number of times string of this size has been created */
static int32 reused[BINCOUNT]; /* Number of times strings in bins have been reused */
static int32 allocations[BINCOUNT]; /* Number of times string of this size has been allocated */
#endif
static int32 freestrings; /* Number of free strings in bins */
static heapblock *binlists[BINCOUNT]; /* Free memory block bins */
static heapblock *freelist; /* List of free blocks not in bins */
static int32 binsizes[BINCOUNT] = { /* Bin number -> string size */
/* short strings */
0, 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 104, 112, 120, 128,
136, 144, 152, 160, 168, 176, 184, 192, 200, 208, 216, 224, 232, 240, 248, 256,
/* Now the medium strings */
512, 768, 1024, 1280, 1536, 1792, 2048,
/* Finally the long strings */
3072, 4096, 8192, 16384, 32768, 65536
};
char emptystring; /* All requests for zero bytes point here */
static boolean collect(void); /* Forward reference */
/*
** 'find_bin' returns the bin number used to hold strings of length
** 'size'. There is no error checking here and so functions that call
** this one must ensure that the string length is in range
*/
static int32 find_bin(int size) {
if (size<=SHORTLIMIT) /* Size<=128 bytes (including zero) */
return (size+SHORTGRAIN-1)/SHORTGRAIN;
else if (size<=MEDLIMIT)
return (size+MEDGRAIN-1)/MEDGRAIN+MEDSTART-2; /* -2 as there are no 0 and 128 byte medium strings */
else { /* Search through larger size string bins */
int n = LONGSTART;
do {
if (binsizes[n]>=size) return n; /* Found wanted string bin size */
n+=1;
} while (n<BINCOUNT);
error(ERR_BROKEN, __LINE__, "strings"); /* Sanity check - String size is too long */
}
return 0; /* Should never be executed */
}
/*
** 'alloc_string' is called to allocate memory for a string. The
** function returns a pointer to the memory allocated. Note that
** requests for zero bytes are allowed, and the address returned
** will point to a valid memory location ('emptystring').
*/
void *alloc_string(int32 size) {
int32 bin, unused;
heapblock *p, *last;
boolean reclaimed;
if (size==0) return &emptystring;
basicvars.runflags.has_variables = TRUE;
bin = find_bin(size);
reclaimed = FALSE;
do {
if (binlists[bin]!=NIL) { /* Found something usable in a bin */
p = binlists[bin];
binlists[bin] = p->blockflink;
freestrings-=1;
#ifdef DEBUG
reused[bin]+=1;
allocations[bin]+=1;
if (basicvars.debug_flags.strings) fprintf(stderr, "Allocate string at %p, length %d bytes\n", p, binsizes[size]);
#endif
return p;
}
/* There was nothing in the bin. Try grabbing more memory from the heap */
size = binsizes[bin]; /* Get string size for bin 'bin' */
p = allocmem(size, 0);
if (p!=NIL) { /* Allocated block from heap successfully */
#ifdef DEBUG
allocated+=size;
created[bin]+=1;
allocations[bin]+=1;
if (basicvars.debug_flags.strings) fprintf(stderr, "strings.c: alloc_string(): Allocate string at %p, length %d bytes\n", p, size);
#endif
return p;
}
/* The heap is exhausted. Try the free block list */
p = freelist;
last = NIL;
while (p!=NIL && p->blocksize<size) { /* Look for first block big enough */
last = p;
p = p->blockflink;
}
if (p!=NIL) { /* Found some memory that can be used */
unused = p->blocksize-size; /* Find out how much of block will be left */
if (unused<=SHORTLIMIT) { /* Remove entire block from the free list */
if (last==NIL) /* Block was first in list */
freelist = p->blockflink;
else {
last->blockflink = p->blockflink;
}
freestrings-=1;
if (unused>0) { /* If anything is left from block, put it in a bin */
basicstring descriptor;
descriptor.stringaddr = CAST(p, char *)+size;
descriptor.stringlen = unused;
free_string(descriptor);
}
}
else { /* Use part of block. Return unused portion to free list */
heapblock *up;
up = CAST(CAST(p, char *)+size, heapblock *);
up->blockflink = p->blockflink;
up->blocksize = unused;
if (last==NIL)
freelist = up;
else {
last->blockflink = up;
}
}
#ifdef DEBUG
allocations[bin]+=1;
if (basicvars.debug_flags.strings) fprintf(stderr, "strings.c: alloc_string(): Allocate string at %p, length %d bytes\n", p, size);
#endif
return p;
}
/*
** The free list was empty too. Attempt to reclaim some memory. Note
** that 'reclaimed' will be set to 'TRUE' if we have already passed
** this way once on this call, indicating that we have already tried
** to reclaim some string memory but that there is still not enough
** available to meet the current request
*/
if (reclaimed || !collect()) {
error(ERR_NOROOM); /* Fail if 'collect' does not achieve anything */
return NIL;
}
reclaimed = TRUE;
} while (TRUE);
return NIL; /* Will never be executed */
}
/*
** 'free_string' returns the block at 'hp' to one of the string heap bins.
** The free blocks are arranged in ascending order of address
*/
void free_string(basicstring descriptor) {
heapblock *hp, *hp2;
int32 size, bin;
size = descriptor.stringlen;
#ifdef DEBUG
if (basicvars.debug_flags.strings) fprintf(stderr, "strings.c: free_string(): Free string at %p, length %d bytes\n",
descriptor.stringaddr, size);
#endif
if (size==0) return; /* Null string - Nothing to return */
hp = CAST(descriptor.stringaddr, heapblock *);
bin = find_bin(size);
hp2 = binlists[bin];
if (hp2==NIL || hp<hp2) { /* New first element in list */
hp->blockflink = hp2;
binlists[bin] = hp;
}
else { /* Add block somewhere in the middle of the list */
heapblock *last;
do {
last = hp2;
hp2 = hp2->blockflink;
} while (hp2!=NIL && hp>hp2);
hp->blockflink = last->blockflink;
last->blockflink = hp;
}
freestrings+=1; /* Bump up number of free strings */
}
/*
** 'discard_strings' is called to dispose of all of the strings in a
** string array. It is used when getting rid of local string arrays.
** 'base' is a pointer to the start of the array and 'size' is its
** size in bytes
*/
void discard_strings(byte *base, int32 size) {
basicstring *p;
int32 n;
p = CAST(base, basicstring *);
n = size/sizeof(basicstring);
while (n>0) {
free_string(*p);
p++;
n--;
}
}
/*
** 'resize_string' is used to check if there is enough room following
** the string passed to it to increase its length to 'newlen' characters.
** If there is not, a new chunk of memory is allocated and the string
** copied to that. The function returns a pointer to the new chunk of
** memory for the string or the old string depending on what happens.
** If a new block is allocated, this functions disposes of the old one.
** Note that 'newlen' can be less that 'oldlen', which means that the
** string is being truncated. Depending on the difference, either a new
** block will be allocated for the string or the old string will be
** returned with the extra bit 'cut off'. The spare block will be
** added to the relevant bin
*/
char *resize_string(char *cp, int32 oldlen, int32 newlen) {
int32 oldbin, newbin;
char *newcp;
basicstring descriptor;
oldbin = find_bin(oldlen);
newbin = find_bin(newlen);
if (newbin==oldbin) return cp; /* Can use same string */
if (newlen>oldlen) { /* New string is longer than old one */
newcp = alloc_string(newlen); /* Grab new block and copy old string to it */
if (oldlen!=0) {
memmove(newcp, cp, oldlen);
descriptor.stringlen = oldlen; /* Have to fake a descriptor for 'free_string' */
descriptor.stringaddr = cp;
free_string(descriptor);
}
return newcp;
}
else { /* New string length is shorter than old */
int32 sizediff;
if (newlen==0) { /* New string is the null string */
descriptor.stringlen = oldlen; /* Have to fake a descriptor for 'free_string' */
descriptor.stringaddr = cp;
free_string(descriptor);
return &emptystring;
}
/*
** At this point the new string length is shorter than the original and the
** string has to be allocated from a bin for a shorter string size. There
** are two possibilities here: allocate a new string and copy the old one
** to it or chop the end off the old string. The only time a string can be
** truncated is when there is a bin of the size of the bit to be released.
*/
sizediff = binsizes[oldbin]-binsizes[newbin];
if (binsizes[find_bin(sizediff)]==sizediff) { /* Bit to be chopped off will go in a bin */
descriptor.stringlen = sizediff; /* Have to fake a descriptor for 'free_string' */
descriptor.stringaddr = cp+binsizes[newbin];
free_string(descriptor);
return cp;
}
else { /* Have to copy string */
newcp = alloc_string(newlen);
memmove(newcp, cp, newlen);
descriptor.stringlen = oldlen; /* Have to fake a descriptor for 'free_string' */
descriptor.stringaddr = cp;
free_string(descriptor);
return newcp;
}
}
}
/*
** 'get_stringlen' returns the length of a '$<addr>' type string. If no
** 'CR' character is found before the maximum allowed string length, the
** length is returned as zero
*/
int32 get_stringlen(size_t start) {
int32 n=0;
byte *mem = (byte *)start;
while (n<=MAXSTRING && mem[n]!=asc_CR) n++;
if (mem[n]==asc_CR) return n;
return 0;
}
/*
** 'clear_strings' is called when a program is loaded, edited or
** run to reset the string memory management stuff when the Basic
** heap is cleared
*/
void clear_strings(void) {
int32 n;
for (n=0; n<BINCOUNT; n++) binlists[n] = NIL;
freestrings = 0;
freelist = NIL;
#ifdef DEBUG
allocated = 0;
for (n=0; n<BINCOUNT; n++) allocations[n] = created[n] = reused[n] = 0;
#endif
}
static int compare(const void *first, const void *second) {
return CAST(CAST(first, freeblock *)->freestart, char *)-CAST(CAST(second, freeblock *)->freestart, char *);
}
/*
** 'collect' is called to try and free some memory in the free string
** lists. It returns 'true' if it mananged to find some otherwise it
** returns 'false'.
*/
static boolean collect(void) {
int n, here, next, size;
heapblock *p;
freeblock *base;
boolean merged;
#ifdef DEBUG
int32 largest, count;
fprintf(stderr, "strings.c: collect(): Trying to merge %d free strings\n", freestrings);
#endif
if (freestrings==0) return FALSE; /* Give up if there is no free memory */
/*
** Start by creating an unsorted table of free blocks of memory held in
** the bins and on the free list. Sort the table into ascending order of
** address and then merge adjacent blocks
*/
base = malloc(freestrings*sizeof(freeblock));
if (base==NIL) return FALSE; /* Indicate call failed */
next = 0;
p = freelist; /* Copy details of strings on free list to table of free blocks */
while (p!=NIL) {
base[next].freestart = p;
base[next].freesize = p->blocksize;
next++;
p = p->blockflink;
}
for (n=1; n<BINCOUNT; n++) { /* Create unsorted table of free blocks */
p = binlists[n];
binlists[n] = NIL;
size = binsizes[n];
while (p!=NIL) {
base[next].freestart = p;
base[next].freesize = size;
next+=1;
p = p->blockflink;
}
}
qsort(base, freestrings, sizeof(freeblock), compare); /* Sort free blocks into address order */
merged = FALSE;
here = 0;
next = 1;
#ifdef DEBUG
largest = count = 0;
#endif
do { /* Go through table and merge adjacent free blocks */
size = base[here].freesize;
while (next<freestrings &&
CAST(CAST(base[here].freestart, char *)+size, heapblock *)==base[next].freestart) {
base[here].freesize = size = size+base[next].freesize;
base[next].freestart = NIL;
merged = TRUE; /* Have managed to merge a couple of blocks */
next++;
#ifdef DEBUG
if (size>largest) largest = size;
count++;
#endif
}
here = next;
next++;
} while (here<freestrings-1);
#ifdef DEBUG
fprintf(stderr, "strings.c: collect(): T%d blocks were merged. Largest block size is %d bytes\n", count, largest);
#endif
/*
** Start by checking if the last block in the table can be returned to the
** Basic heap and dispose of it if it can. After that go through the free
** block table and put strings into bins if they are of the right size.
** Anything left will be added to the free string list.
** Note that the code goes through the table in reverse order so that the
** strings at the lowest addresses will be the first ones to be taken from
** the bins when requests for string memory are made
*/
n = freestrings-1;
while (n>=0 && base[n].freestart==NIL) n--; /* Find final block in table */
if (n>=0 && returnable(base[n].freestart, base[n].freesize)) { /* Return block to Basic heap if possible */
freemem(base[n].freestart, base[n].freesize);
#ifdef DEBUG
allocated-=base[n].freesize;
fprintf(stderr, "strings.c: collect(): TReturned %d bytes at %p to Basic heap\n", base[n].freesize, base[n].freestart);
#endif
n--;
}
freestrings = 0;
freelist = NIL;
while (n>=0) { /* Add blocks either to a bin or the free string list depending on size */
if (base[n].freestart!=NIL) { /* Want this entry */
if (base[n].freesize<=MAXSTRING)
size = find_bin(base[n].freesize);
else {
size = 0;
}
if (size>0 && binsizes[size]==base[n].freesize) { /* Block size matches that of a bin */
base[n].freestart->blockflink = binlists[size];
binlists[size] = base[n].freestart;
}
else {
base[n].freestart->blocksize = base[n].freesize;
base[n].freestart->blockflink = freelist;
freelist = base[n].freestart;
}
freestrings++;
}
n--;
}
free(base);
return merged;
}
#ifdef DEBUG
/*
** 'show_stringstats' prints statistics on string bin usage
*/
void show_stringstats(void) {
int32 n, free;
heapblock *p;
fprintf(stderr, "String statistics:\n");
for (n=1; n<BINCOUNT; n++) {
p = binlists[n];
free = 0;
while (p!=NIL) {
free++;
p = p->blockflink;
}
fprintf(stderr, "Size = %5d requests = %d created = %d reused = %d free = %d\n",
binsizes[n], allocations[n], created[n], reused[n], free);
}
collect();
}
/*
** 'check_alloc' is called to check for memory leaks. It counts the
** number of bytes held in the free lists and currently allocated and
** ensures that the total of these is equal to the number of bytes
** allocated from the Basic heap. If it is not, either memory is being
** lost somewhere or being released more than once
*/
void check_alloc(void) {
int32 n, m, used, usedcount, free, freecount, elements;
heapblock *p;
variable *vp;
basicstring *sp;
if (allocated==0) return; /* No strings were allocated */
used = usedcount = free = freecount = 0;
for (n=1; n<BINCOUNT; n++) { /* Find number of bytes in free lists */
p = binlists[n];
m = 0;
while (p!=NIL) {
m++;
p = p->blockflink;
}
free+=m*binsizes[n];
freecount+=m;
/* if (m!=0) fprintf(stderr, "Block size %5d: %d entries\n", binsizes[n], m); */
}
for (n=0; n<VARLISTS; n++) { /* Find number of bytes in use */
vp = basicvars.varlists[n];
while (vp!=NIL) {
if (vp->varflags==VAR_STRINGDOL) {
used+=binsizes[find_bin(vp->varentry.varstring.stringlen)];
usedcount++;
}
else if (vp->varflags==VAR_STRARRAY && vp->varentry.vararray!=NIL) {
sp = vp->varentry.vararray->arraystart.stringbase;
elements = vp->varentry.vararray->arrsize;
for (m=1; m<=elements; m++) {
used+=binsizes[find_bin(sp->stringlen)];
sp++;
}
usedcount+=elements;
}
vp = vp->varflink;
}
}
n = allocated-used-free;
fprintf(stderr, "Bytes allocated = %d, in use = %d, free = %d",
allocated, used, free);
if (n==0)
fprintf(stderr, " - Okay\n");
else if (n<0)
fprintf(stderr, " - Too many releases (%d bytes)\n", n);
else {
fprintf(stderr, " *** Memory leak (%d bytes) ***\n", n);
}
fprintf(stderr, "Strings in use = %d, free = %d\n", usedcount, freecount);
}
#endif
/* Additional string functions needed for RISC OS CLib build */
#ifdef TARGET_RISCOS
#ifdef __TARGET_SCL__
size_t strnlen(const char *s, size_t maxlen) {
size_t len;
for (len = 0; len < maxlen; len++, s++) {
if (!*s) break;
}
return (len);
}
#endif /* __TARGET_SCL__ */
#endif /* TARGET_RISCOS */