forked from arjunvekariyagithub/camelyon16-grand-challenge
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvariables_test.py
392 lines (338 loc) · 15.8 KB
/
variables_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for slim.variables."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from camelyon16.inception.slim import scopes
from camelyon16.inception.slim import variables
class VariablesTest(tf.test.TestCase):
def testCreateVariable(self):
with self.test_session():
with tf.variable_scope('A'):
a = variables.variable('a', [5])
self.assertEquals(a.op.name, 'A/a')
self.assertListEqual(a.get_shape().as_list(), [5])
def testGetVariables(self):
with self.test_session():
with tf.variable_scope('A'):
a = variables.variable('a', [5])
with tf.variable_scope('B'):
b = variables.variable('a', [5])
self.assertEquals([a, b], variables.get_variables())
self.assertEquals([a], variables.get_variables('A'))
self.assertEquals([b], variables.get_variables('B'))
def testGetVariablesSuffix(self):
with self.test_session():
with tf.variable_scope('A'):
a = variables.variable('a', [5])
with tf.variable_scope('A'):
b = variables.variable('b', [5])
self.assertEquals([a], variables.get_variables(suffix='a'))
self.assertEquals([b], variables.get_variables(suffix='b'))
def testGetVariableWithSingleVar(self):
with self.test_session():
with tf.variable_scope('parent'):
a = variables.variable('child', [5])
self.assertEquals(a, variables.get_unique_variable('parent/child'))
def testGetVariableWithDistractors(self):
with self.test_session():
with tf.variable_scope('parent'):
a = variables.variable('child', [5])
with tf.variable_scope('child'):
variables.variable('grandchild1', [7])
variables.variable('grandchild2', [9])
self.assertEquals(a, variables.get_unique_variable('parent/child'))
def testGetVariableThrowsExceptionWithNoMatch(self):
var_name = 'cant_find_me'
with self.test_session():
with self.assertRaises(ValueError):
variables.get_unique_variable(var_name)
def testGetThrowsExceptionWithChildrenButNoMatch(self):
var_name = 'parent/child'
with self.test_session():
with tf.variable_scope(var_name):
variables.variable('grandchild1', [7])
variables.variable('grandchild2', [9])
with self.assertRaises(ValueError):
variables.get_unique_variable(var_name)
def testGetVariablesToRestore(self):
with self.test_session():
with tf.variable_scope('A'):
a = variables.variable('a', [5])
with tf.variable_scope('B'):
b = variables.variable('a', [5])
self.assertEquals([a, b], variables.get_variables_to_restore())
def testNoneGetVariablesToRestore(self):
with self.test_session():
with tf.variable_scope('A'):
a = variables.variable('a', [5], restore=False)
with tf.variable_scope('B'):
b = variables.variable('a', [5], restore=False)
self.assertEquals([], variables.get_variables_to_restore())
self.assertEquals([a, b], variables.get_variables())
def testGetMixedVariablesToRestore(self):
with self.test_session():
with tf.variable_scope('A'):
a = variables.variable('a', [5])
b = variables.variable('b', [5], restore=False)
with tf.variable_scope('B'):
c = variables.variable('c', [5])
d = variables.variable('d', [5], restore=False)
self.assertEquals([a, b, c, d], variables.get_variables())
self.assertEquals([a, c], variables.get_variables_to_restore())
def testReuseVariable(self):
with self.test_session():
with tf.variable_scope('A'):
a = variables.variable('a', [])
with tf.variable_scope('A', reuse=True):
b = variables.variable('a', [])
self.assertEquals(a, b)
self.assertListEqual([a], variables.get_variables())
def testVariableWithDevice(self):
with self.test_session():
with tf.variable_scope('A'):
a = variables.variable('a', [], device='cpu:0')
b = variables.variable('b', [], device='cpu:1')
self.assertDeviceEqual(a.device, 'cpu:0')
self.assertDeviceEqual(b.device, 'cpu:1')
def testVariableWithDeviceFromScope(self):
with self.test_session():
with tf.device('/cpu:0'):
a = variables.variable('a', [])
b = variables.variable('b', [], device='cpu:1')
self.assertDeviceEqual(a.device, 'cpu:0')
self.assertDeviceEqual(b.device, 'cpu:1')
def testVariableWithDeviceFunction(self):
class DevFn(object):
def __init__(self):
self.counter = -1
def __call__(self, op):
self.counter += 1
return 'cpu:%d' % self.counter
with self.test_session():
with scopes.arg_scope([variables.variable], device=DevFn()):
a = variables.variable('a', [])
b = variables.variable('b', [])
c = variables.variable('c', [], device='cpu:12')
d = variables.variable('d', [])
with tf.device('cpu:99'):
e_init = tf.constant(12)
e = variables.variable('e', initializer=e_init)
self.assertDeviceEqual(a.device, 'cpu:0')
self.assertDeviceEqual(a.initial_value.device, 'cpu:0')
self.assertDeviceEqual(b.device, 'cpu:1')
self.assertDeviceEqual(b.initial_value.device, 'cpu:1')
self.assertDeviceEqual(c.device, 'cpu:12')
self.assertDeviceEqual(c.initial_value.device, 'cpu:12')
self.assertDeviceEqual(d.device, 'cpu:2')
self.assertDeviceEqual(d.initial_value.device, 'cpu:2')
self.assertDeviceEqual(e.device, 'cpu:3')
self.assertDeviceEqual(e.initial_value.device, 'cpu:99')
def testVariableWithReplicaDeviceSetter(self):
with self.test_session():
with tf.device(tf.train.replica_device_setter(ps_tasks=2)):
a = variables.variable('a', [])
b = variables.variable('b', [])
c = variables.variable('c', [], device='cpu:12')
d = variables.variable('d', [])
with tf.device('cpu:99'):
e_init = tf.constant(12)
e = variables.variable('e', initializer=e_init)
# The values below highlight how the replica_device_setter puts initial
# values on the worker job, and how it merges explicit devices.
self.assertDeviceEqual(a.device, '/job:ps/task:0/cpu:0')
self.assertDeviceEqual(a.initial_value.device, '/job:worker/cpu:0')
self.assertDeviceEqual(b.device, '/job:ps/task:1/cpu:0')
self.assertDeviceEqual(b.initial_value.device, '/job:worker/cpu:0')
self.assertDeviceEqual(c.device, '/job:ps/task:0/cpu:12')
self.assertDeviceEqual(c.initial_value.device, '/job:worker/cpu:12')
self.assertDeviceEqual(d.device, '/job:ps/task:1/cpu:0')
self.assertDeviceEqual(d.initial_value.device, '/job:worker/cpu:0')
self.assertDeviceEqual(e.device, '/job:ps/task:0/cpu:0')
self.assertDeviceEqual(e.initial_value.device, '/job:worker/cpu:99')
def testVariableWithVariableDeviceChooser(self):
with tf.Graph().as_default():
device_fn = variables.VariableDeviceChooser(num_parameter_servers=2)
with scopes.arg_scope([variables.variable], device=device_fn):
a = variables.variable('a', [])
b = variables.variable('b', [])
c = variables.variable('c', [], device='cpu:12')
d = variables.variable('d', [])
with tf.device('cpu:99'):
e_init = tf.constant(12)
e = variables.variable('e', initializer=e_init)
# The values below highlight how the VariableDeviceChooser puts initial
# values on the same device as the variable job.
self.assertDeviceEqual(a.device, '/job:ps/task:0/cpu:0')
self.assertDeviceEqual(a.initial_value.device, a.device)
self.assertDeviceEqual(b.device, '/job:ps/task:1/cpu:0')
self.assertDeviceEqual(b.initial_value.device, b.device)
self.assertDeviceEqual(c.device, '/cpu:12')
self.assertDeviceEqual(c.initial_value.device, c.device)
self.assertDeviceEqual(d.device, '/job:ps/task:0/cpu:0')
self.assertDeviceEqual(d.initial_value.device, d.device)
self.assertDeviceEqual(e.device, '/job:ps/task:1/cpu:0')
self.assertDeviceEqual(e.initial_value.device, '/cpu:99')
def testVariableGPUPlacement(self):
with tf.Graph().as_default():
device_fn = variables.VariableDeviceChooser(placement='gpu:0')
with scopes.arg_scope([variables.variable], device=device_fn):
a = variables.variable('a', [])
b = variables.variable('b', [])
c = variables.variable('c', [], device='cpu:12')
d = variables.variable('d', [])
with tf.device('cpu:99'):
e_init = tf.constant(12)
e = variables.variable('e', initializer=e_init)
# The values below highlight how the VariableDeviceChooser puts initial
# values on the same device as the variable job.
self.assertDeviceEqual(a.device, '/gpu:0')
self.assertDeviceEqual(a.initial_value.device, a.device)
self.assertDeviceEqual(b.device, '/gpu:0')
self.assertDeviceEqual(b.initial_value.device, b.device)
self.assertDeviceEqual(c.device, '/cpu:12')
self.assertDeviceEqual(c.initial_value.device, c.device)
self.assertDeviceEqual(d.device, '/gpu:0')
self.assertDeviceEqual(d.initial_value.device, d.device)
self.assertDeviceEqual(e.device, '/gpu:0')
self.assertDeviceEqual(e.initial_value.device, '/cpu:99')
def testVariableCollection(self):
with self.test_session():
a = variables.variable('a', [], collections='A')
b = variables.variable('b', [], collections='B')
self.assertEquals(a, tf.get_collection('A')[0])
self.assertEquals(b, tf.get_collection('B')[0])
def testVariableCollections(self):
with self.test_session():
a = variables.variable('a', [], collections=['A', 'C'])
b = variables.variable('b', [], collections=['B', 'C'])
self.assertEquals(a, tf.get_collection('A')[0])
self.assertEquals(b, tf.get_collection('B')[0])
def testVariableCollectionsWithArgScope(self):
with self.test_session():
with scopes.arg_scope([variables.variable], collections='A'):
a = variables.variable('a', [])
b = variables.variable('b', [])
self.assertListEqual([a, b], tf.get_collection('A'))
def testVariableCollectionsWithArgScopeNested(self):
with self.test_session():
with scopes.arg_scope([variables.variable], collections='A'):
a = variables.variable('a', [])
with scopes.arg_scope([variables.variable], collections='B'):
b = variables.variable('b', [])
self.assertEquals(a, tf.get_collection('A')[0])
self.assertEquals(b, tf.get_collection('B')[0])
def testVariableCollectionsWithArgScopeNonNested(self):
with self.test_session():
with scopes.arg_scope([variables.variable], collections='A'):
a = variables.variable('a', [])
with scopes.arg_scope([variables.variable], collections='B'):
b = variables.variable('b', [])
variables.variable('c', [])
self.assertListEqual([a], tf.get_collection('A'))
self.assertListEqual([b], tf.get_collection('B'))
def testVariableRestoreWithArgScopeNested(self):
with self.test_session():
with scopes.arg_scope([variables.variable], restore=True):
a = variables.variable('a', [])
with scopes.arg_scope([variables.variable],
trainable=False,
collections=['A', 'B']):
b = variables.variable('b', [])
c = variables.variable('c', [])
self.assertListEqual([a, b, c], variables.get_variables_to_restore())
self.assertListEqual([a, c], tf.trainable_variables())
self.assertListEqual([b], tf.get_collection('A'))
self.assertListEqual([b], tf.get_collection('B'))
class GetVariablesByNameTest(tf.test.TestCase):
def testGetVariableGivenNameScoped(self):
with self.test_session():
with tf.variable_scope('A'):
a = variables.variable('a', [5])
b = variables.variable('b', [5])
self.assertEquals([a], variables.get_variables_by_name('a'))
self.assertEquals([b], variables.get_variables_by_name('b'))
def testGetVariablesByNameReturnsByValueWithScope(self):
with self.test_session():
with tf.variable_scope('A'):
a = variables.variable('a', [5])
matched_variables = variables.get_variables_by_name('a')
# If variables.get_variables_by_name returns the list by reference, the
# following append should persist, and be returned, in subsequent calls
# to variables.get_variables_by_name('a').
matched_variables.append(4)
matched_variables = variables.get_variables_by_name('a')
self.assertEquals([a], matched_variables)
def testGetVariablesByNameReturnsByValueWithoutScope(self):
with self.test_session():
a = variables.variable('a', [5])
matched_variables = variables.get_variables_by_name('a')
# If variables.get_variables_by_name returns the list by reference, the
# following append should persist, and be returned, in subsequent calls
# to variables.get_variables_by_name('a').
matched_variables.append(4)
matched_variables = variables.get_variables_by_name('a')
self.assertEquals([a], matched_variables)
class GlobalStepTest(tf.test.TestCase):
def testStable(self):
with tf.Graph().as_default():
gs = variables.global_step()
gs2 = variables.global_step()
self.assertTrue(gs is gs2)
def testDevice(self):
with tf.Graph().as_default():
with scopes.arg_scope([variables.global_step], device='/gpu:0'):
gs = variables.global_step()
self.assertDeviceEqual(gs.device, '/gpu:0')
def testDeviceFn(self):
class DevFn(object):
def __init__(self):
self.counter = -1
def __call__(self, op):
self.counter += 1
return '/cpu:%d' % self.counter
with tf.Graph().as_default():
with scopes.arg_scope([variables.global_step], device=DevFn()):
gs = variables.global_step()
gs2 = variables.global_step()
self.assertDeviceEqual(gs.device, '/cpu:0')
self.assertEquals(gs, gs2)
self.assertDeviceEqual(gs2.device, '/cpu:0')
def testReplicaDeviceSetter(self):
device_fn = tf.train.replica_device_setter(2)
with tf.Graph().as_default():
with scopes.arg_scope([variables.global_step], device=device_fn):
gs = variables.global_step()
gs2 = variables.global_step()
self.assertEquals(gs, gs2)
self.assertDeviceEqual(gs.device, '/job:ps/task:0')
self.assertDeviceEqual(gs.initial_value.device, '/job:ps/task:0')
self.assertDeviceEqual(gs2.device, '/job:ps/task:0')
self.assertDeviceEqual(gs2.initial_value.device, '/job:ps/task:0')
def testVariableWithVariableDeviceChooser(self):
with tf.Graph().as_default():
device_fn = variables.VariableDeviceChooser()
with scopes.arg_scope([variables.global_step], device=device_fn):
gs = variables.global_step()
gs2 = variables.global_step()
self.assertEquals(gs, gs2)
self.assertDeviceEqual(gs.device, 'cpu:0')
self.assertDeviceEqual(gs.initial_value.device, gs.device)
self.assertDeviceEqual(gs2.device, 'cpu:0')
self.assertDeviceEqual(gs2.initial_value.device, gs2.device)
if __name__ == '__main__':
tf.test.main()