-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmodel_utils.py
68 lines (56 loc) · 2.53 KB
/
model_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# Loss
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init
import numpy as np
def get_criterion(creiterion_name, num_of_classes, device, num_of_class_samples=None):
per_cls_weights = torch.ones(num_of_classes).to(device)
if creiterion_name == 'CE':
criterion = nn.CrossEntropyLoss(weight=per_cls_weights, reduction='none').to(device)
elif creiterion_name== 'Focal':
criterion = FocalLoss(weight=per_cls_weights, gamma=1.0, reduction='none').to(device)
elif creiterion_name == 'LDAM':
criterion = LDAMLoss(cls_num_list=num_of_class_samples, max_m=0.5, s=30, weight=per_cls_weights, reduction='none').to(device)
return criterion
def focal_loss(input_values, gamma):
"""Computes the focal loss
Reference: https://github.com/kaidic/LDAM-DRW/blob/master/losses.py
"""
p = torch.exp(-input_values)
loss = (1 - p) ** gamma * input_values
return loss
class FocalLoss(nn.Module):
"""Reference: https://github.com/kaidic/LDAM-DRW/blob/master/losses.py"""
def __init__(self, weight=None, gamma=0., reduction='mean'):
super(FocalLoss, self).__init__()
assert gamma >= 0
self.gamma = gamma
self.weight = weight
self.reduction = reduction
def forward(self, input, target):
return focal_loss(F.cross_entropy(input, target, weight=self.weight, reduction=self.reduction), self.gamma)
class LDAMLoss(nn.Module):
"""Reference: https://github.com/kaidic/LDAM-DRW/blob/master/losses.py"""
def __init__(self, cls_num_list, max_m=0.5, weight=None, s=30, reduction='mean'):
super(LDAMLoss, self).__init__()
m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list))
for i, num in enumerate(cls_num_list):
if cls_num_list[i] == 0:
m_list[i] = 0
m_list = m_list * (max_m / np.max(m_list))
m_list = torch.cuda.FloatTensor(m_list)
print(m_list)
self.m_list = m_list
self.scale = s
self.weight = weight
self.reduction = reduction
def forward(self, x, target):
index = torch.zeros_like(x, dtype=torch.uint8)
index.scatter_(1, target.data.view(-1, 1), 1)
index_float = index.type(torch.cuda.FloatTensor)
batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(0, 1))
batch_m = batch_m.view((-1, 1))
x_m = x - batch_m
output = torch.where(index, x_m, x)
return F.cross_entropy(self.scale * output, target, weight=self.weight, reduction=self.reduction)