forked from openfoodfacts/off-category-classification
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
206 lines (167 loc) · 6.54 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import argparse
import datetime
import functools
import json
import pathlib
import shutil
import tempfile
from typing import Dict, List
import numpy as np
import dacite
import pandas as pd
import tensorflow as tf
from robotoff.taxonomy import Taxonomy
from tensorflow import keras
from tensorflow.data import Dataset
from tensorflow.keras import callbacks
from tensorflow.python.ops import summary_ops_v2
import settings
from category_classification.data_utils import (
TFTransformer,
create_tf_dataset,
load_dataframe,
get_labels,
)
from category_classification.models import (
KerasPreprocessing,
build_model,
construct_preprocessing,
to_serving_model,
)
from category_classification.config import Config
from utils.io import (
copy_category_taxonomy,
save_category_vocabulary,
save_config,
save_json,
)
from utils.metrics import evaluation_report
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("config", type=pathlib.Path)
parser.add_argument("output_dir", type=pathlib.Path)
parser.add_argument(
"--repeat", type=int, default=1, help="number of replicates to run"
)
return parser.parse_args()
def create_model(config: Config, preprocess: KerasPreprocessing) -> keras.Model:
model = build_model(config.model_config, preprocess)
loss_fn = keras.losses.BinaryCrossentropy(
label_smoothing=config.train_config.label_smoothing
)
optimizer = keras.optimizers.Adam(learning_rate=config.train_config.lr)
model.compile(
optimizer=optimizer,
loss=loss_fn,
metrics=["binary_accuracy", "Precision", "Recall"],
)
return model
def get_config(args) -> Config:
with args.config.open("r") as f:
config_dict = json.load(f)
print("Full configuration:\n{}".format(json.dumps(config_dict, indent=4)))
return dacite.from_dict(Config, config_dict)
class TBCallback(callbacks.TensorBoard):
"""Get around a bug where you cannot use the TensorBoard callback with the StringLookup layers
- https://github.com/tensorflow/tensorboard/issues/4530#issuecomment-783318292"""
def _log_weights(self, epoch):
with self._train_writer.as_default():
with summary_ops_v2.always_record_summaries():
for layer in self.model.layers:
for weight in layer.weights:
if hasattr(weight, "name"):
weight_name = weight.name.replace(":", "_")
summary_ops_v2.histogram(weight_name, weight, step=epoch)
if self.write_images:
self._log_weight_as_image(weight, weight_name, epoch)
self._train_writer.flush()
def train(
model: keras.Model,
save_dir: pathlib.Path,
config: Config,
category_vocab: List[str],
):
print("Starting training...")
temporary_log_dir = pathlib.Path(tempfile.mkdtemp())
print("Temporary log directory: {}".format(temporary_log_dir))
tf_transformer = TFTransformer(category_vocab)
train = create_tf_dataset("train", config.train_config.batch_size, tf_transformer)
val = create_tf_dataset("val", config.train_config.batch_size, tf_transformer)
model.fit(train,
epochs= config.train_config.epochs,
validation_data=val,
callbacks=[
callbacks.TerminateOnNaN(),
callbacks.ModelCheckpoint(
filepath=str(save_dir / "weights.{epoch:02d}-{val_loss:.4f}"),
monitor="val_loss",
save_best_only=True,
save_format='tf',
),
TBCallback(log_dir=str(temporary_log_dir), histogram_freq=1),
callbacks.EarlyStopping(monitor="val_loss", patience=4),
callbacks.CSVLogger(str(save_dir / "training.csv")),
],
)
print("Training ended")
log_dir = save_dir / "logs"
print("Moving log directory from {} to {}".format(temporary_log_dir, log_dir))
shutil.move(str(temporary_log_dir), str(log_dir))
print("Saving the base and the serving model {}".format(save_dir))
model.save(str(save_dir / "base/saved_model"))
to_serving_model(model, category_vocab).save(str(save_dir / "serving/saved_model"))
category_taxonomy = Taxonomy.from_json(settings.CATEGORY_TAXONOMY_PATH)
print("Evaluating on validation dataset")
y_pred_val = model.predict(val)
report, clf_report = evaluation_report(
get_labels(val), y_pred_val, taxonomy=category_taxonomy, category_names=category_vocab
)
save_json(report, save_dir / "metrics_val.json")
save_json(clf_report, save_dir / "classification_report_val.json")
print("Evaluating on test dataset")
test = create_tf_dataset("test", config.train_config.batch_size, tf_transformer)
y_pred_test = model.predict(test)
report, clf_report = evaluation_report(
get_labels(test), y_pred_test, taxonomy=category_taxonomy, category_names=category_vocab
)
save_json(report, save_dir / "metrics_test.json")
save_json(clf_report, save_dir / "classification_report_test.json")
def main():
args = parse_args()
config: Config = get_config(args)
model_config = config.model_config
output_dir = args.output_dir
output_dir.mkdir(parents=True, exist_ok=True)
keras_preprocess = construct_preprocessing(
model_config.category_min_count,
model_config.ingredient_min_count,
model_config.product_name_max_tokens,
model_config.product_name_max_length,
load_dataframe("train"),
)
print("Pre-processing of training data complete.")
replicates = args.repeat
if replicates == 1:
save_dirs = [output_dir]
else:
save_dirs = [output_dir / str(i) for i in range(replicates)]
for i, save_dir in enumerate(save_dirs):
model = create_model(config, keras_preprocess)
save_dir.mkdir(exist_ok=True)
config.train_config.start_datetime = str(datetime.datetime.utcnow())
print(f"Starting training repeat {i}")
save_config(config, save_dir)
copy_category_taxonomy(settings.CATEGORY_TAXONOMY_PATH, save_dir)
save_category_vocabulary(keras_preprocess.category_vocab, save_dir)
train(
model,
save_dir,
config,
keras_preprocess.category_vocab,
)
config.train_config.end_datetime = str(datetime.datetime.utcnow())
save_config(config, save_dir)
config.train_config.start_datetime = None
config.train_config.end_datetime = None
if __name__ == "__main__":
main()