You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I was trying both pancreas and pbmc examples, pancreas one worked great under cpu or gpu, but I received an error message for pbmc example under gpu as follows.
~/.local/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py in _run(self, model)
713 self.call_setup_hook(model) # allow user to setup lightning_module in accelerator environment
714 self.call_configure_sharded_model(model) # allow user to setup in model sharded environment
--> 715 self.accelerator.setup(self, model) # note: this sets up self.lightning_module
716
717 # ----------------------------
~/.local/lib/python3.8/site-packages/torch/nn/modules/module.py in to(self, *args, **kwargs)
850 return t.to(device, dtype if t.is_floating_point() or t.is_complex() else None, non_blocking)
851
--> 852 return self._apply(convert)
853
854 def register_backward_hook(
~/.local/lib/python3.8/site-packages/torch/nn/modules/module.py in _apply(self, fn)
528 def _apply(self, fn):
529 for module in self.children():
--> 530 module._apply(fn)
531
532 def compute_should_use_set_data(tensor, tensor_applied):
~/.local/lib/python3.8/site-packages/torch/nn/modules/module.py in _apply(self, fn)
528 def _apply(self, fn):
529 for module in self.children():
--> 530 module._apply(fn)
531
532 def compute_should_use_set_data(tensor, tensor_applied):
~/.local/lib/python3.8/site-packages/torch/nn/modules/module.py in _apply(self, fn)
550 # with torch.no_grad():
551 with torch.no_grad():
--> 552 param_applied = fn(param)
553 should_use_set_data = compute_should_use_set_data(param, param_applied)
554 if should_use_set_data:
~/.local/lib/python3.8/site-packages/torch/nn/modules/module.py in convert(t)
848 return t.to(device, dtype if t.is_floating_point() or t.is_complex() else None,
849 non_blocking, memory_format=convert_to_format)
--> 850 return t.to(device, dtype if t.is_floating_point() or t.is_complex() else None, non_blocking)
851
852 return self._apply(convert)
RuntimeError: CUDA error: all CUDA-capable devices are busy or unavailable
CUDA kernel errors might be asynchronously reported at some other API call,so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1.`
I have tested pbmc example with cpu, it worked fine. Just wonder why this is the case.
Please advise.
Thanks
The text was updated successfully, but these errors were encountered:
Hi,
I was trying both pancreas and pbmc examples, pancreas one worked great under cpu or gpu, but I received an error message for pbmc example under gpu as follows.
`RuntimeError Traceback (most recent call last)
in
----> 1 hd_ae.train(num_epochs=100)
2 source_embeddings = hd_ae.embed_data(source_adata)
3 sc.pp.neighbors(source_embeddings)
4 sc.tl.umap(source_embeddings)
5 sc.pl.umap(source_embeddings, color=['cell_type', 'study'], wspace=0.4)
~/.local/lib/python3.8/site-packages/hd_ae/models.py in train(self, num_epochs)
122 train_loader = DataLoader(train_set, batch_size=128, shuffle=True)
123 trainer = pl.Trainer(gpus=1 if torch.cuda.is_available() else 0, max_epochs=num_epochs)
--> 124 trainer.fit(self.model, train_loader)
125 self.model.eval()
126
~/.local/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py in fit(self, model, train_dataloader, val_dataloaders, datamodule)
456 )
457
--> 458 self._run(model)
459
460 assert self.state.stopped
~/.local/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py in _run(self, model)
713 self.call_setup_hook(model) # allow user to setup lightning_module in accelerator environment
714 self.call_configure_sharded_model(model) # allow user to setup in model sharded environment
--> 715 self.accelerator.setup(self, model) # note: this sets up self.lightning_module
716
717 # ----------------------------
~/.local/lib/python3.8/site-packages/pytorch_lightning/accelerators/gpu.py in setup(self, trainer, model)
39 self.set_nvidia_flags(trainer.local_rank)
40 torch.cuda.set_device(self.root_device)
---> 41 return super().setup(trainer, model)
42
43 def on_train_start(self) -> None:
~/.local/lib/python3.8/site-packages/pytorch_lightning/accelerators/accelerator.py in setup(self, trainer, model)
88 model: the LightningModule
89 """
---> 90 self.setup_training_type_plugin(self.training_type_plugin, model)
91 if not self.training_type_plugin.setup_optimizers_in_pre_dispatch:
92 self.setup_optimizers(trainer)
~/.local/lib/python3.8/site-packages/pytorch_lightning/accelerators/accelerator.py in setup_training_type_plugin(self, plugin, model)
381 def setup_training_type_plugin(self, plugin: TrainingTypePlugin, model: 'pl.LightningModule') -> None:
382 """Attaches the training type plugin to the accelerator."""
--> 383 plugin.setup(model)
384
385 def setup_precision_plugin(self, plugin: PrecisionPlugin) -> None:
~/.local/lib/python3.8/site-packages/pytorch_lightning/plugins/training_type/single_device.py in setup(self, model)
67
68 def setup(self, model: torch.nn.Module) -> torch.nn.Module:
---> 69 self.model_to_device()
70 return self.model
71
~/.local/lib/python3.8/site-packages/pytorch_lightning/plugins/training_type/single_device.py in model_to_device(self)
64 torch.cuda.set_device(self.root_device)
65
---> 66 self._model.to(self.root_device)
67
68 def setup(self, model: torch.nn.Module) -> torch.nn.Module:
~/.local/lib/python3.8/site-packages/pytorch_lightning/utilities/device_dtype_mixin.py in to(self, *args, **kwargs)
107 out = torch._C._nn._parse_to(*args, **kwargs)
108 self.__update_properties(device=out[0], dtype=out[1])
--> 109 return super().to(*args, **kwargs)
110
111 def cuda(self, device: Optional[Union[torch.device, int]] = None) -> Module:
~/.local/lib/python3.8/site-packages/torch/nn/modules/module.py in to(self, *args, **kwargs)
850 return t.to(device, dtype if t.is_floating_point() or t.is_complex() else None, non_blocking)
851
--> 852 return self._apply(convert)
853
854 def register_backward_hook(
~/.local/lib/python3.8/site-packages/torch/nn/modules/module.py in _apply(self, fn)
528 def _apply(self, fn):
529 for module in self.children():
--> 530 module._apply(fn)
531
532 def compute_should_use_set_data(tensor, tensor_applied):
~/.local/lib/python3.8/site-packages/torch/nn/modules/module.py in _apply(self, fn)
528 def _apply(self, fn):
529 for module in self.children():
--> 530 module._apply(fn)
531
532 def compute_should_use_set_data(tensor, tensor_applied):
~/.local/lib/python3.8/site-packages/torch/nn/modules/module.py in _apply(self, fn)
550 #
with torch.no_grad():
551 with torch.no_grad():
--> 552 param_applied = fn(param)
553 should_use_set_data = compute_should_use_set_data(param, param_applied)
554 if should_use_set_data:
~/.local/lib/python3.8/site-packages/torch/nn/modules/module.py in convert(t)
848 return t.to(device, dtype if t.is_floating_point() or t.is_complex() else None,
849 non_blocking, memory_format=convert_to_format)
--> 850 return t.to(device, dtype if t.is_floating_point() or t.is_complex() else None, non_blocking)
851
852 return self._apply(convert)
RuntimeError: CUDA error: all CUDA-capable devices are busy or unavailable
CUDA kernel errors might be asynchronously reported at some other API call,so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1.`
I have tested pbmc example with cpu, it worked fine. Just wonder why this is the case.
Please advise.
Thanks
The text was updated successfully, but these errors were encountered: