We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
在传统的FCN中,每个图像只生成一个score map, 表示每个像素的值表示该像素是否属于 目标的概率。 在 InstanceFCN中,作者会生成kk个score maps, 每个像素的值表示该像素是否属于某一 类的某个位置的概率。 R-FCN 提出了 position-sensitive score map "位置敏感得分地图",借鉴InstanceFCN的思 想,为(C+1)个类别生成kk*(C+1)个得分地图 当 k = 3时, 左上,中上,右上 左中,中中,右中 左下,中下,右下 On the top branch,会生成k2 个Instance score map,也就是每个像素都会有k2个不同的 值,即解决了相同像素在不同Instance中有不同的响应。然后经过assembling module就 可以生成all Instance map。但是并不是所有的响应都有Instance出现。所以作者在bottom branch,计算了objectness score map。将两者融合就能获得最终的Instance Segmentation
The text was updated successfully, but these errors were encountered:
No branches or pull requests
参考链接:https://blog.csdn.net/ethan_wuuu/article/details/76944945
在传统的FCN中,每个图像只生成一个score map, 表示每个像素的值表示该像素是否属于
目标的概率。
在 InstanceFCN中,作者会生成kk个score maps, 每个像素的值表示该像素是否属于某一
类的某个位置的概率。
R-FCN 提出了 position-sensitive score map "位置敏感得分地图",借鉴InstanceFCN的思
想,为(C+1)个类别生成kk*(C+1)个得分地图
当 k = 3时,
左上,中上,右上
左中,中中,右中
左下,中下,右下
On the top branch,会生成k2 个Instance score map,也就是每个像素都会有k2个不同的
值,即解决了相同像素在不同Instance中有不同的响应。然后经过assembling module就
可以生成all Instance map。但是并不是所有的响应都有Instance出现。所以作者在bottom
branch,计算了objectness score map。将两者融合就能获得最终的Instance
Segmentation
The text was updated successfully, but these errors were encountered: