-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimulation.R
112 lines (89 loc) · 4.23 KB
/
simulation.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
# Demo code for semiparametric regression using data with measurement error
# Date : 2020/09/30
# Author : Sunsik Kim
library(rstan)
source("./model_vb.R")
# Simulation data generation ----------------------------------------------
set.seed(10)
n_intknot = 5
N = 130
D = 6
RR = 0.9
xi2 = 0.8
sig2v = xi2/RR-xi2
mux = 1.5
beta = rnorm(D+1)
w = matrix(rnorm(N*D),N,D)
x = rnorm(N, mux, sqrt(xi2))
v = rnorm(N, x, sqrt(sig2v))
f = function(x) 2*x+2*sin(pi*x)
y = drop(cbind(1,w)%*%beta + f(x) + rnorm(N, sd=0.7))
# Create list of objects to pass into Stan --------------------------------
resolution = 200 # number of x's to estimate f(x)
order = 4 # To build cubic B-spline basis
knots = quantile(unique(v), seq(0,1,length=n_intknot+2)[-c(1,n_intknot+2)])
boundary = c(min(v)-sd(v)/2, max(v)+sd(v)/2)
xgrid = seq(boundary[1], boundary[2], length.out=resolution)
bsgrid = bs(x=xgrid, knots=knots, intercept=TRUE, Boundary.knots=boundary)
data = list(
n_obs = length(y),
n_intknot = length(knots),
n_regcoef = D,
int_knots = knots,
boundary = boundary,
order = order,
resolution = resolution,
y = y,
v = v,
bsgrid = bsgrid,
w = w)
# Estimate : Variational Bayes --------------------------------------------
start = Sys.time()
vb_result = model_vb(y,w,v,n_intknot=5)
Sys.time() - start
# Estimate : MCMC ---------------------------------------------------------
set.seed(100)
start = Sys.time()
mcmc_result = stan("./model_mcmc.stan", data=data, iter=1e3)
Sys.time() - start
write.csv(extract(mcmc_result, 'fxGrid')$fxGrid, "./samples_fxGrid.csv", row.names=FALSE)
write.csv(extract(mcmc_result, 'beta')$beta, "./samples_beta.csv", row.names=FALSE)
mcmc_curve = as.matrix(read.csv("./samples_fxGrid.csv", header=TRUE))
mcmc_beta = as.matrix(read.csv("./samples_beta.csv", header=TRUE))
# Result presentation : Parametric part -----------------------------------
# png('./result.png', width=900, height=250) # Uncomment when saving plots into file
# par(mfrow=c(1,4), mar=c(4,4,4,1)) # Uncomment when saving plots into file
deviance = 0.2
ord = order(beta[-1])
plot(1:length(beta[-1]), beta[-1][ord], pch=19, xlim=c(0.5,6.5), ylim=c(-2,1.2), xlab="", ylab="", main="Regression Coefficients")
vb_beta_mean = vb_result$mubeta.q[-1][ord]
vb_beta_var = diag(vb_result$sigbeta.q)[-1][ord]
mc_beta_mean = colMeans(mcmc_beta)[-1][ord]
mc_beta_upper = apply(mcmc_beta, 2, quantile, 0.975)[-1][ord]
mc_beta_lower = apply(mcmc_beta, 2, quantile, 0.025)[-1][ord]
for (idx in 1:D) {
vb_upper = qnorm(0.975, vb_beta_mean[idx], sqrt(vb_beta_var[idx]))
vb_lower = qnorm(0.025, vb_beta_mean[idx], sqrt(vb_beta_var[idx]))
lines(c(idx-deviance, idx-deviance), c(vb_upper, vb_lower), lwd=3, col="darkgoldenrod4")
lines(c(idx+deviance, idx+deviance), c(mc_beta_upper[idx], mc_beta_lower[idx]), lwd=3, col="deepskyblue4")
}
points((1:length(beta[-1]))-deviance, vb_result$mubeta.q[-1][ord], pch=19, col="darkgoldenrod1")
points((1:length(beta[-1]))+deviance, colMeans(mcmc_beta)[-1][ord], pch=19, col="deepskyblue1")
legend(0.5,1,col=c("darkgoldenrod4", "deepskyblue3"),lwd=c(4,4),legend=c("VB", "MCMC"),bty="n")
# Result presentation : Nonparametric part --------------------------------
plot(v, y, pch=19,cex=0.3, main="Contaminated Scatter Plot")
vb_x = c(vb_result$xgrid, rev(vb_result$xgrid))
vb_y = vb_result$mubeta.q[1] + c(vb_result$post_lower, rev(vb_result$post_upper))
mcmc_x = c(xgrid, rev(xgrid))
mcmc_y = colMeans(mcmc_beta)[1] + c(apply(mcmc_curve,2,quantile,0.025), rev(apply(mcmc_curve,2,quantile,0.975)))
plot(x,y-w%*%vb_result$mubeta.q[-1], main="Mean curve(VB)", ylab="Residual", cex=0.3, pch=19)
polygon(vb_x, vb_y, col="darkgoldenrod1", lty = "blank")
points(x,y-w%*%vb_result$mubeta.q[-1], cex=0.3, pch=19)
lines(vb_result$xgrid, f(vb_result$xgrid), lwd=3, col="grey60")
lines(vb_result$xgrid, vb_result$post_curve+vb_result$mubeta.q[1], col="darkgoldenrod4", lwd=3)
plot(x,y-w%*%colMeans(mcmc_beta)[-1], main="Mean Curve(MCMC)", ylab="Residual", cex=0.3, pch=19)
polygon(mcmc_x, mcmc_y, col="deepskyblue1", lty="blank")
points(x,y-w%*%colMeans(mcmc_beta)[-1],cex=0.3, pch=19)
lines(vb_result$xgrid, f(vb_result$xgrid), lwd=3, col="grey60")
lines(xgrid, colMeans(mcmc_curve)+colMeans(mcmc_beta)[1], col="deepskyblue4", lwd=4)
# dev.off() # Uncomment when saving plots into file