Skip to content

Latest commit

 

History

History
45 lines (34 loc) · 1.12 KB

README.md

File metadata and controls

45 lines (34 loc) · 1.12 KB

Build Status

HMC-loss

Abstruct

Python-implemented hierarchical multi-class validation metrics: HMC-loss . Original paper is (Bi&Kwok, 2012) .

Install

pip install hmc_loss

Requirement

  • numpy
  • Network X

How to use

This metrics is implemented like scikit-learn metrics.

from hmc_loss import hmc_loss_score, get_cost_list
import numpy as np

# Generate label data(2-D array of numpy)
true_label = np.random.randint(2, size(100, 100))
pred_label = np.random.randint(2, size(100, 100))

# Generate test graph(Di-Graph of NetworkX)
graph = nx.gnc_graph(100)
# Generate element list of graph node
label_list = list(range(100))
# Calculate cost of each node in graph
cost_list = get_cost_list(graph, 0, label_list)
# Calculate HMC-loss
hmc_loss_score(true_label, pred_label, graph, 0, label_list, cost_list, alpha=0.5, beta=1.5)

Licence

MIT

Author

Taske HAMANO