-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloader.py
359 lines (326 loc) · 14 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
# -*- coding: utf-8 -*-
"""
Created on Wed Nov 09 17:25:55 2016
@author: shiwu_001
"""
from .config import DTYPE
import caffe
import numpy as np
import lmdb
from threading import Thread
from Queue import Queue
class DataLoader(object):
def __init__(self):
self.mean = np.zeros(3)
self.std = np.ones(3)
self.nimages = 0
self.key_length = 5
self.data = None
self.label = None
self.transformer = None
def __getitem__(self, key):
if key in ['data', 'label', 'transformer', 'mean', 'std']:
return eval('self.%s' % key)
else:
raise Exception('Invalid key: %s' % key)
return None
def __setitem__(self, key, item):
if key in ['data', 'label', 'transformer', 'mean', 'std']:
exec('self.%s = item' % key)
else:
raise Exception('Invalid key: %s' % key)
def _init_loader(self, path):
env = lmdb.open(path, readonly=True)
self.nimages = env.stat()['entries']
print "Load %d images from %s" % (self.nimages, path)
txn = env.begin()
return txn
def _load_image(self, txn, index, key_length):
raw_datum = txn.get(eval("'%%0%dd' %% index" % key_length))
datum = caffe.proto.caffe_pb2.Datum()
datum.ParseFromString(raw_datum)
flat_x = np.fromstring(datum.data, dtype=np.uint8)
x = flat_x.reshape(datum.channels, datum.height, datum.width)
y = datum.label
return x,y
def _load_batch(self, txn, batch, dest_x, dest_y):
for i,index in enumerate(batch):
x,y = self._load_image(txn, index, self.key_length)
dest_x[i,...] = x
dest_y[i] = y
def compute_meanstd(data, verbose=False):
print "Computing mean"
mean = np.mean(data, axis=(0,2,3))
print "Computing std"
std = np.std(data, axis=(0,2,3))
return mean, std
def load_dataset(self, path, recompute=False, transform=False):
self.path = path
txn = self._init_loader(path)
# get the shape
x,y = self._load_image(txn, 0, self.key_length)
c,h,w = x.shape
data = np.zeros((self.nimages, c, h, w))
label = np.zeros((self.nimages))
batch = np.arange(self.nimages)
self._load_batch(txn, batch, data, label)
self.data = data
self.label = label
if recompute:
self.mean, self.std = self.compute_meanstd(self.data, verbose=True)
print "Mean", self.mean
print "Std", self.std
if transform:
self.transform_dataset(self)
def transform_dataset(self, dataset, meanstd=None):
if meanstd is None:
dataset['data'] -= self.mean.reshape(1,3,1,1)
dataset['data'] /= self.std.reshape(1,3,1,1)
else:
dataset['data'] -= meanstd['mean']
dataset['data'] /= meanstd['std']
class CifarDataLoader(DataLoader):
def __init__(self, path, net, phase, data_blob='data', label_blob='label'):
super(CifarDataLoader, self).__init__()
self.mean = np.array([125.3, 123.0, 113.9])
self.std = np.array([63.0, 62.1, 66.7])
self.key_length = 5
self.data_blob = data_blob
self.label_blob = label_blob
# self.batchsize = net.blobs[data_blob].num
if phase == caffe.TRAIN:
self.load_dataset(path=path, transform=True)
self.transformer = CifarTransformer({
data_blob: net.blobs[data_blob].data.shape})
self.transformer.set_pad(data_blob, 4)
self.transformer.set_mirror(data_blob, True)
elif phase == caffe.TEST:
self.load_dataset(path=path, transform=True)
else:
raise Exception("Invalid phase: %s" % str(phase))
def _load_batch_from_dataset(self, batchid, dest_data, dest_label):
if self.transformer is None:
for i,bid in enumerate(batchid):
dest_data[i,...] = self.data[bid,...]
else:
for i,bid in enumerate(batchid):
dest_data[i,...] = self.transformer.process(
self.data_blob, self.data[bid,...])
if dest_label is not None:
for i,bid in enumerate(batchid):
dest_label[i] = self.label[bid]
def sample_batch(self, batchsize):
return np.random.randint(self.nimages, size=batchsize)
def fill_input(self, net, batchid=None):
data_blob = self.data_blob
label_blob = self.label_blob
batchsize = net.blobs[self.data_blob].num
if batchid is None:
batchid = self.sample_batch(batchsize)
else:
assert(batchsize == len(batchid))
if label_blob is not None:
self._load_batch_from_dataset(batchid, net.blobs[data_blob].data,
net.blobs[label_blob].data)
else:
self._load_batch_from_dataset(batchid, net.blobs[data_blob].data,
None)
class CifarTransformer(object):
def __init__(self, inputs):
self.inputs = inputs
self.pad = {}
self.pad_value = {}
self.mean = {}
self.std = {}
self.mirror = {}
self.center = {}
def __check_input(self, in_):
if in_ not in self.inputs:
raise Exception("{} is not one of the net inputs: {}".format(
in_, self.inputs))
def process(self, in_, data):
self.__check_input(in_)
data_in = np.copy(data).astype(DTYPE)
mean = self.mean.get(in_)
std = self.std.get(in_)
pad = self.pad.get(in_)
pad_value = self.pad_value.get(in_)
mirror = self.mirror.get(in_)
center = self.center.get(in_)
in_dims = self.inputs[in_][2:]
if mean is not None:
data_in -= mean
if std is not None:
data_in /= std
if pad is not None:
if pad_value is None:
pad_value = 0
data_in = np.pad(data_in, ((0,0), (pad,pad), (pad,pad)),
'constant', constant_values=pad_value)
if data_in.shape[1] >= in_dims[0] and data_in.shape[2] >= in_dims[1]:
if center is not None and center:
h_off = int((data_in.shape[1] - in_dims[0]+1) / 2)
w_off = int((data_in.shape[2] - in_dims[1]+1) / 2)
else:
h_off = np.random.randint(data_in.shape[1] - in_dims[0]+1)
w_off = np.random.randint(data_in.shape[2] - in_dims[1]+1)
data_in = data_in[:,h_off:h_off+in_dims[0],
w_off:w_off+in_dims[1]]
else:
print 'Image is smaller than input: (%d,%d) vs (%d,%d)' \
% (data_in.shape[1],data_in.shape[2], in_dims[0],in_dims[1])
if mirror is not None and mirror and np.random.randint(2) == 1:
data_in = data_in[:,:,::-1]
return data_in
def set_mean(self, in_, mean):
self.__check_input(in_)
ms = mean.shape
if mean.ndim == 1:
# broadcast channels
if ms[0] != self.inputs[in_][1]:
raise ValueError('Mean channels incompatible with input.')
mean = mean[:, np.newaxis, np.newaxis]
else:
# elementwise mean
if len(ms) == 2:
ms = (1,) + ms
if len(ms) != 3:
raise ValueError('Mean shape invalid')
if ms != self.inputs[in_][1:]:
raise ValueError('Mean shape incompatible with input shape.')
self.mean[in_] = mean
def set_std(self, in_, std):
self.__check_input(in_)
ss = std.shape
if std.ndim == 1:
# broadcast channels
if ss[0] != self.inputs[in_][1]:
raise ValueError('Std channels incompatible with input.')
std = std[:, np.newaxis, np.newaxis]
else:
# elementwise mean
if len(ss) == 2:
ss = (1,) + ss
if len(ss) != 3:
raise ValueError('Std shape invalid')
if ss != self.inputs[in_][1:]:
raise ValueError('Std shape incompatible with input shape.')
self.std[in_] = std
def set_pad(self, in_, pad):
self.__check_input(in_)
self.pad[in_] = pad
def set_pad_value(self, in_, pad_value):
self.__check_input(in_)
self.pad_value[in_] = pad_value
def set_mirror(self, in_, mirror):
self.__check_input(in_)
self.mirror[in_] = mirror
def set_center(self, in_, center):
self.__check_input(in_)
self.center[in_] = center
class CifarDataLoaderThread(Thread):
def __init__(self, tid, queue, buffer_out, data, label,
data_blob, label_blob, data_blob_shape, transformer):
super(CifarDataLoaderThread, self).__init__()
self.tid = tid
self.queue = queue
self.buffer_out = buffer_out
self.data = data
self.label = label
self.data_blob = data_blob
self.label_blob = label_blob
self.data_blob_shape = data_blob_shape
self.transformer = transformer
def run(self):
if self.transformer is not None:
ndata = self.data.shape[0]
data_processed = np.zeros(self.data_blob_shape)
for i in xrange(ndata):
data_processed[i, ...] = self.transformer.process(self.data_blob, self.data[i, ...])
self.buffer_out[self.data_blob][...] = data_processed
else:
self.buffer_out[self.data_blob][...] = self.data
if self.label_blob is not None:
self.buffer_out[self.label_blob][...] = self.label
self.queue.put(self.tid)
class CifarDataLoaderMultiThreading(CifarDataLoader):
def __init__(self, nthreads, *args, **kwargs):
super(CifarDataLoaderMultiThreading, self).__init__(*args, **kwargs)
self.nthreads = nthreads
self.thread_list = None
self.buffers = None
self.queue = Queue()
def _start_load_batch_from_dataset(self, tid, data_blob_shape):
batchid = self.sample_batch(data_blob_shape[0])
td = CifarDataLoaderThread(tid, self.queue, self.buffers[tid],
self.data[batchid, ...], self.label[batchid],
self.data_blob, self.label_blob,
data_blob_shape, self.transformer)
td.start()
self.thread_list[tid] = td
def _join_load_batch_from_dataset(self, tid):
self.thread_list[tid].join()
def _init_load_batch_from_dataset(self, net):
self.thread_list = range(self.nthreads)
self.buffers = []
for tid in xrange(self.nthreads):
self.buffers.append(dict())
self.buffers[-1][self.data_blob] = np.zeros_like(net.blobs[self.data_blob].data)
if self.label_blob is not None:
self.buffers[-1][self.label_blob] = np.zeros_like(net.blobs[self.label_blob].data)
for tid in xrange(self.nthreads):
self._start_load_batch_from_dataset(tid, net.blobs[self.data_blob].data.shape)
def _fill_input_from_buffers(self, net):
if self.thread_list is None:
self._init_load_batch_from_dataset(net)
print "Init %d dataloader threads" % self.nthreads
tid = self.queue.get()
self._join_load_batch_from_dataset(tid)
net.blobs[self.data_blob].data[...] = self.buffers[tid][self.data_blob]
if self.label_blob is not None:
net.blobs[self.label_blob].data[...] = self.buffers[tid][self.label_blob]
self._start_load_batch_from_dataset(tid, net.blobs[self.data_blob].data.shape)
def fill_input(self, net, batchid=None):
if batchid is None:
self._fill_input_from_buffers(net)
else:
if self.label_blob is not None:
self._load_batch_from_dataset(batchid, net.blobs[self.data_blob].data,
net.blobs[self.label_blob].data)
else:
self._load_batch_from_dataset(batchid, net.blobs[self.data_blob].data,
None)
# def __del__(self):
# if self.thread_list is not None:
# for tid in xrange(self.nthreads):
# if type(self.thread_list[tid]) is CifarDataLoaderThread:
# self.thread_list[tid].terminate()
#if __name__ == '__main__':
# import sys
# sys.path.insert(0, '..')
# from latte.config import CAFFE_ROOT
# from latte.net import MyNet
# import os.path as osp
# import sys
# import time
# nthrd = int(sys.argv[1])
# deploy = osp.join(CAFFE_ROOT, "examples", "cifar10", "resnet20_cifar10_1st_deploy.prototxt")
# model = None
# data_blob = "data"
# label_blob = "label"
# net = MyNet(deploy, model, pretrained=(model!=None))
# dataset = CifarDataLoaderMultiThreading(nthrd, osp.join(CAFFE_ROOT, 'examples', 'cifar10/cifar10_train_lmdb'),
# net, phase=caffe.TRAIN,
# data_blob=data_blob, label_blob=label_blob)
# ######################################################
## dataset.transformer.set_mirror(data_blob, False)
# ######################################################
# net.set_dataloader(dataset)
# start_time = time.time()
# for i in xrange(51):
# net.load_data(None)
# time.sleep(1)
# if i % 10 == 0:
# end_time = time.time()
# print i, "%.3f" % (end_time - start_time)
# start_time = end_time