-
Notifications
You must be signed in to change notification settings - Fork 127
/
helper.py
396 lines (309 loc) · 13.7 KB
/
helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
import os
import numpy as np
import tensorflow as tf
from ddpg_lib import *
import ipdb as pdb
import matplotlib.pyplot as plt
state_avg = np.array([0.031,0.153,0.399,0.772,1.274,1.911,2.694,3.630,4.730,6.021,7.902])
trans_p = np.array([[0.514,0.514,1.000,],
[0.513,0.696,1.000,],
[0.513,0.745,1.000,],
[0.515,0.776,1.000,],
[0.513,0.799,1.000,],
[0.514,0.821,1.000,],
[0.516,0.842,1.000,],
[0.511,0.858,1.000,],
[0.516,0.880,1.000,],
[0.512,0.897,1.000,],
[0.671,1.000,1.000,],]) # stay, lower, higher
alpha = 3.0
ref_loss = 0.001
class MarkovModel(object):
"""docstring for MarkovModel"""
def __init__(self, dis, seed=123):
# self.f_m = f_m
# self.t_p = t_p
self.dis = dis
self.path_loss = ref_loss*np.power(1./dis, alpha)
np.random.seed([seed])
# calculate the transition prob
self.trans_p = trans_p
self.state_avg = state_avg
self.state = np.random.randint(0, 11) # states in {0,...,9}
def getCh(self):
return np.array([np.sqrt(self.path_loss*self.state_avg[self.state])])
def sampleCh(self):
temp = np.random.random()
if temp >= trans_p[self.state, 1]:
self.state += 1
elif temp >= trans_p[self.state, 0]:
self.state -= 1
self.state = np.fmax(np.fmin(self.state, 11), 0)
return self.getCh()
def complexGaussian(row=1, col=1, amp=1.0):
real = np.random.normal(size=[row,col])[0]*np.sqrt(0.5)
img = np.random.normal(size=[row,col])[0]*np.sqrt(0.5)
return amp*(real + 1j*img)
class ARModel(object):
"""docstring for AR channel Model"""
def __init__(self, dis, n_t=1, n_r=1, rho=0.95, seed=123):
self.dis = dis
self.n_t = n_t
self.n_r = n_r
self.path_loss = ref_loss*np.power(1./dis, alpha)
np.random.seed([seed])
self.rho = rho
self.H = complexGaussian(self.n_t, self.n_r)
def getCh(self):
return self.H*np.sqrt(self.path_loss)
def sampleCh(self):
self.H = self.rho*self.H + complexGaussian(self.n_t, self.n_r, np.sqrt(1-self.rho*self.rho))
return self.getCh()
class DDPGAgentLD(object):
"""agent initialization from saved model"""
def __init__(self, sess, user_config):
self.sess = sess
self.user_id = user_config['id']
self.state_dim = user_config['state_dim']
self.action_dim = user_config['action_dim']
# restore the input and output for the actor network
self.actor = ActorNetworkLD(sess, self.user_id)
def predict(self, s):
# pdb.set_trace()
return self.actor.predict(np.reshape(s, (1, self.state_dim)))[0]
def init_target_network(self):
pass
class DQNAgent(object):
"""docstring for DQNAgent"""
def __init__(self, sess, user_config, train_config):
self.sess = sess
self.user_id = user_config['id']
self.state_dim = user_config['state_dim']
self.action_dim = user_config['action_dim']
self.action_bound = user_config['action_bound']
self.action_level = user_config['action_level']
self.minibatch_size = int(train_config['minibatch_size'])
self.epsilon = float(train_config['epsilon'])
self.action_nums = 1
for i in range(self.action_dim):
self.action_nums *= self.action_level
self.max_step = 100000
self.pre_train_steps = 5000
self.total_step = 0
self.DQN = DeepQNetwork(sess, self.state_dim, self.action_nums, float(train_config['critic_lr']), float(train_config['tau']), float(train_config['gamma']), self.user_id)
self.replay_buffer = ReplayBuffer(int(train_config['buffer_size']), int(train_config['random_seed']))
def init_target_network(self):
self.DQN.update_target_network()
def predict(self, s):
if self.total_step <= self.max_step:
self.epsilon *= 0.999976
if np.random.rand(1) < self.epsilon or self.total_step < self.pre_train_steps:
action = np.random.randint(0, self.action_nums)
else:
action, _ = self.DQN.predict(np.reshape(s, (1, self.state_dim)))
self.total_step += 1
return action, np.zeros([1])
def update(self, s, a, r, t, s2):
self.replay_buffer.add(np.reshape(s, (self.state_dim,)), a, r,
t, np.reshape(s2, (self.state_dim,)))
if self.replay_buffer.size() > self.minibatch_size:
s_batch, a_batch, r_batch, t_batch, s2_batch = \
self.replay_buffer.sample_batch(self.minibatch_size)
# calculate targets
_, q_out = self.DQN.predict(s_batch)
target_prediction, target_q_out = self.DQN.predict_target(s2_batch)
for k in range(self.minibatch_size):
if t_batch[k]:
q_out[k][a_batch[k]] = r_batch[k]
else:
q_out[k][a_batch[k]] = r_batch[k] + self.DQN.gamma * target_q_out[k][target_prediction[k]]
# Update the critic given the targets
q_loss, _ = self.DQN.train(
s_batch, q_out)
# losses.append(q_loss)
# Update target networks
self.DQN.update_target_network()
class DDPGAgent(object):
"""docstring for DDPGAgent"""
def __init__(self, sess, user_config, train_config):
self.sess = sess
self.user_id = user_config['id']
self.state_dim = user_config['state_dim']
self.action_dim = user_config['action_dim']
self.action_bound = user_config['action_bound']
self.init_path = user_config['init_path'] if 'init_path' in user_config else ''
self.minibatch_size = int(train_config['minibatch_size'])
self.noise_sigma = float(train_config['noise_sigma'])
# initalize the required modules: actor, critic and replaybuffer
self.actor = ActorNetwork(sess, self.state_dim, self.action_dim, self.action_bound, float(train_config['actor_lr']), float(train_config['tau']), self.minibatch_size, self.user_id)
self.critic = CriticNetwork(sess, self.state_dim, self.action_dim, float(train_config['critic_lr']), float(train_config['tau']), float(train_config['gamma']), self.actor.get_num_trainable_vars())
self.replay_buffer = ReplayBuffer(int(train_config['buffer_size']), int(train_config['random_seed']))
# mu, sigma=0.12, theta=.15, dt=1e-2,
self.actor_noise = OrnsteinUhlenbeckActionNoise(mu=np.zeros(self.action_dim),sigma=self.noise_sigma)
# self.actor_noise = GaussianNoise(0.1, 0.01, size=np.array([self.action_dim]))
def init_target_network(self):
# Initialize the original network and target network with pre-trained model
if len(self.init_path) == 0:
self.actor.update_target_network()
else:
self.actor.init_target_network(self.init_path)
self.critic.update_target_network()
# input current state and then return the next action
def predict(self, s, isUpdateActor):
if isUpdateActor:
noise = self.actor_noise()
else:
noise = np.zeros(self.action_dim)
return self.actor.predict(np.reshape(s, (1, self.actor.s_dim)))[0] + noise, noise
# return self.actor.predict(np.reshape(s, (1, self.actor.s_dim))) + np.random.normal(0.0,0.1,[self.action_dim])
def update(self, s, a, r, t, s2, isUpdateActor):
self.replay_buffer.add(np.reshape(s, (self.actor.s_dim,)), np.reshape(a, (self.actor.a_dim,)), r,
t, np.reshape(s2, (self.actor.s_dim,)))
if self.replay_buffer.size() > self.minibatch_size:
s_batch, a_batch, r_batch, t_batch, s2_batch = \
self.replay_buffer.sample_batch(self.minibatch_size)
# calculate targets
target_q = self.critic.predict_target(
s2_batch, self.actor.predict_target(s2_batch))
y_i = []
for k in range(self.minibatch_size):
if t_batch[k]:
y_i.append(r_batch[k])
else:
y_i.append(r_batch[k] + self.critic.gamma * target_q[k])
# Update the critic given the targets
predicted_q_value, _ = self.critic.train(
s_batch, a_batch, np.reshape(y_i, (self.minibatch_size, 1)))
if isUpdateActor:
# Update the actor policy using the sampled gradient
a_outs = self.actor.predict(s_batch)
grads = self.critic.action_gradients(s_batch, a_outs)
self.actor.train(s_batch, grads[0])
# Update target networks
self.actor.update_target_network()
self.critic.update_target_network()
def test_helper(env, num_steps):
cur_init_ds_ep = env.reset()
user_list = env.user_list
cur_r_ep = np.zeros(len(user_list))
cur_p_ep = np.zeros(len(user_list))
cur_ts_ep = np.zeros(len(user_list))
cur_ps_ep = np.zeros(len(user_list))
cur_rs_ep = np.zeros(len(user_list))
cur_ds_ep = np.zeros(len(user_list))
cur_ch_ep = np.zeros(len(user_list))
for j in range(num_steps):
# first try to transmit from current state
[cur_r, done, cur_p, cur_n, cur_ts, cur_ps, cur_rs, cur_ds, cur_ch] = env.step_transmit()
cur_r_ep += cur_r
cur_p_ep += cur_p
cur_ts_ep += cur_ts
cur_rs_ep += cur_rs
cur_ds_ep += cur_ds
cur_ch_ep += cur_ch
if cur_r <= -1000:
print("<-----!!!----->")
print('%d:r:%f,p:%s,n:%s,tr:%s,ps:%s, rev:%s,dbuf:%s,ch:%s,ibuf:%s' % (j, cur_r, cur_p, cur_n, cur_ts, cur_ps, cur_rs, cur_ds, cur_ch, cur_init_ds_ep))
print('r:%.4f,p:%.4f,tr:%.4f,pr:%.4f,rev:%.4f,dbuf:%.4f,ch:%.8f,ibuf:%d' % (cur_r_ep/MAX_EPISODE_LEN, cur_p_ep/MAX_EPISODE_LEN, cur_ts_ep/MAX_EPISODE_LEN, cur_ps_ep/MAX_EPISODE_LEN, cur_rs_ep/MAX_EPISODE_LEN, cur_ds_ep/MAX_EPISODE_LEN, cur_ch_ep/MAX_EPISODE_LEN, cur_init_ds_ep[0]))
def plot_everything(res, win=10):
length = len(res)
temp = np.array(res)
rewards = temp[:,:,0]
avg_r = np.sum(rewards, axis=1)/rewards.shape[1]
plt.plot(range(avg_r.shape[0]), avg_r)
avg_r_sm = moving_average(avg_r, win)
plt.plot(range(avg_r_sm.shape[0]), avg_r_sm)
plt.xlabel('step')
plt.ylabel('Total moving reward')
plt.show()
powers = temp[:,:,2]
avg_p = np.sum(powers, axis=1)/powers.shape[1]
plt.plot(range(avg_p.shape[0]), avg_p)
avg_p_sm = moving_average(avg_p, win)
plt.plot(range(avg_p_sm.shape[0]), avg_p_sm)
plt.xlabel('step')
plt.ylabel('power')
plt.show()
bufs = temp[:,:,7]
avg_b = np.sum(bufs, axis=1)/bufs.shape[1]
plt.plot(range(avg_b.shape[0]), avg_b)
avg_b_sm = moving_average(avg_b, win)
plt.plot(range(avg_b_sm.shape[0]), avg_b_sm)
plt.xlabel('step')
plt.ylabel('buffer length')
plt.show()
ofs = temp[:,:,9]
avg_o = np.sum(ofs, axis=1)/ofs.shape[1]
plt.plot(range(avg_o.shape[0]), avg_o)
avg_o_sm = moving_average(avg_o, win)
plt.plot(range(avg_o_sm.shape[0]), avg_o_sm)
plt.xlabel('step')
plt.ylabel('buffer length')
plt.show()
return avg_r, avg_p, avg_b, avg_o
def read_log(dir_path, user_idx=0):
fileList = os.listdir(dir_path)
fileList = [name for name in fileList if '.npz' in name]
avg_rs = []
avg_ps = []
avg_bs = []
avg_os = []
for name in fileList:
path = dir_path + name
res = np.load(path)
temp_rs = np.array(res['arr_0'])
avg_rs.append(temp_rs[:, user_idx])
temp_ps = np.array(res['arr_1'])
avg_ps.append(temp_ps[:, user_idx])
temp_bs = np.array(res['arr_2'])
avg_bs.append(temp_bs[:, user_idx])
temp_os = np.array(res['arr_3'])
avg_os.append(temp_os[:, user_idx])
avg_rs = np.array(avg_rs)
avg_ps = np.array(avg_ps)
avg_bs = np.array(avg_bs)
avg_os = np.array(avg_os)
return avg_rs, avg_ps, avg_bs, avg_os
def plot_curve(rs, ps, bs, os, win=10):
for avg_r in rs:
avg_r_sm = moving_average(avg_r, win)
plt.plot(range(avg_r.shape[0]), avg_r)
plt.plot(range(avg_r_sm.shape[0]), avg_r_sm)
plt.xlabel('step')
plt.ylabel('Total moving reward')
plt.show()
for avg_p in ps:
avg_p_sm = moving_average(avg_p, win)
plt.plot(range(avg_p.shape[0]), avg_p)
plt.plot(range(avg_p_sm.shape[0]), avg_p_sm)
plt.xlabel('step')
plt.ylabel('power')
plt.show()
for avg_b in bs:
avg_b_sm = moving_average(avg_b, win)
plt.plot(range(avg_b.shape[0]), avg_b)
plt.plot(range(avg_b_sm.shape[0]), avg_b_sm)
plt.xlabel('step')
plt.ylabel('buffer length')
plt.show()
for avg_o in os:
avg_o_sm = moving_average(avg_o, win)
plt.plot(range(avg_o.shape[0]), avg_o)
plt.plot(range(avg_o_sm.shape[0]), avg_o_sm)
plt.xlabel('step')
plt.ylabel('overflow probability')
plt.show()
def moving_average(a, n=3) :
ret = np.cumsum(a, dtype=float, axis=0)
ret[n:] = ret[n:] - ret[:-n]
return ret[n - 1:] / n
# import matplotlib.pyplot as plt
# N = 8
# y = np.zeros(N)
# x1 = np.linspace(0, 10, N, endpoint=True)
# x2 = np.linspace(0, 10, N, endpoint=False)
# plt.plot(x1, y, 'o')
# plt.plot(x2, y + 0.5, 'o')
# plt.ylim([-0.5, 1])
# plt.savefig('ex.eps', format='eps', dpi=1000)
# plt.show()