-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSiameseNetworkDataset.py
53 lines (44 loc) · 1.7 KB
/
SiameseNetworkDataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from torch.utils.data import Dataset
import torch
import numpy as np
from PIL import Image
import random
class SiameseNetworkDataset(Dataset):
def __init__(self, imageFolderDataset, transform=None):
# self.root_dir = root_dir
# self.label = label
# self.transform=transform
self.imageFolderDataset=imageFolderDataset
self.transform=transform
def __getitem__(self, index):
# img0 = Image.open(self.root_dir + '/pair1/' + str(index) + '.bmp')
# img1 = Image.open(self.root_dir + '/pair2/' + str(index) + '.bmp')
#
# img0=img0.convert("L")
# img1=img1.convert("L")
#
# if self.transform is not None:
# img0=self.transform(img0)
# img1=self.transform(img1)
#
# return img0,img1, torch.from_numpy(np.array([int(self.label[index])],dtype=np.float32))
img0_tuple=random.choice(self.imageFolderDataset.imgs)
should_get_same_patch=random.randint(0,1)
image0=Image.open(img0_tuple[0])
if should_get_same_patch:
image1=image0
else:
img1_tuple = random.choice(self.imageFolderDataset.imgs)
while img1_tuple[0]!=img0_tuple[0]:
break
image1=Image.open(img1_tuple[0])
x=random.randint(0,359)
image1=image1.rotate(x)
image0 = image0.convert('L')
image1 = image1.convert('L')
if self.transform is not None:
image0=self.transform(image0)
image1=self.transform(image1)
return image0, image1, torch.from_numpy(np.array([should_get_same_patch],dtype=np.float32))
def __len__(self):
return len(self.imageFolderDataset.imgs)