-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualize_data.py
30 lines (25 loc) · 937 Bytes
/
visualize_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
from torch.utils.data import DataLoader
import torchvision
import torch
import matplotlib.pyplot as plt
import torchvision.transforms as transforms
import numpy as np
import torchvision.datasets as dset
from SiameseNetworkDataset import SiameseNetworkDataset
def imshow(img,text,should_save=False):
npimg = img.numpy()
plt.axis("off")
if text:
plt.text(75, 8, text, style='italic',fontweight='bold',
bbox={'facecolor':'white', 'alpha':0.8, 'pad':10})
plt.imshow(np.transpose(npimg, (1, 2, 0)))
plt.show()
f=open('label.txt','r');
label=f.read()
dataset=SiameseNetworkDataset('.',label,transform=transforms.ToTensor())
vis_dataloader=DataLoader(dataset,shuffle=True,batch_size=8)
dataiter=iter(vis_dataloader)
example_batch = next(dataiter)
concatenated = torch.cat((example_batch[0],example_batch[1]),0)
imshow(torchvision.utils.make_grid(concatenated),'img')
print(example_batch[2].numpy())