-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain-mlp.py
226 lines (177 loc) · 6.81 KB
/
train-mlp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# %%
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import TensorDataset, DataLoader
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from tqdm import tqdm
import matplotlib.pyplot as plt
import numpy as np
from models.MLP import MLP
# %%
hidden_dim = 8
layers = 3
output_dim = 1
# learning_rate = 0.00005
learning_rate = 0.0005
num_epochs = 2000
epochs_step = 10
batch_size = 32
test_size = 0.3
dropout_rate = 0.5
pos_weight_ratio = 5
# ds_name = 'datasets/20220328-or-eng-shrink-full.csv'
ds_name = 'output2.csv'
train = True
# %%
data = pd.read_csv(ds_name)
# removed_cols = ['Postoperative Olanzapine', 'Postoperative Fluphenazine', 'Postoperative Flupentixol']
# data = data.drop(removed_cols, axis=1)
# 将特征和目标分开
features = data.drop('Label', axis=1).values
target = data['Label'].values
print(features.shape)
print(target.shape)
# %%
# 划分训练集和测试集
train_features, test_features, train_target, test_target = train_test_split(
features, target, test_size=test_size, random_state=42)
# %%
# 将数据转换为PyTorch张量
train_features = torch.Tensor(train_features)
test_features = torch.Tensor(test_features)
train_target = torch.tensor(train_target, dtype=torch.float32).view(-1, 1)
test_target = torch.tensor(test_target, dtype=torch.float32).view(-1, 1)
train_dataset = TensorDataset(train_features, train_target)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
input_dim = train_features.shape[1]
# %%
# Random seed
torch.manual_seed(42)
model = MLP(input_dim, hidden_dim, output_dim,
layers=layers, dropout_rate=dropout_rate)
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
pos_weight = torch.tensor(
(train_target == 0).sum() / (train_target == 1).sum(), dtype=torch.float32)
print(pos_weight)
criterion = nn.BCEWithLogitsLoss(pos_weight=pos_weight*pos_weight_ratio)
unratio_criterion = nn.BCEWithLogitsLoss(pos_weight=pos_weight)
# To device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# device = torch.device('cpu')
torch.set_float32_matmul_precision('high')
model = model.to(device)
criterion = criterion.to(device)
unratio_criterion = unratio_criterion.to(device)
train_features = train_features.to(device)
test_features = test_features.to(device)
train_target = train_target.to(device)
test_target = test_target.to(device)
# Compile model
# model = torch.compile(model)
# %%
def train_model(model, criterion, optimizer, num_epochs=100):
train_losses = []
test_losses = []
sensitivities = []
sppecificities = []
for epoch in tqdm(range(num_epochs)):
model.train()
if epoch == num_epochs // 2:
criterion = nn.BCEWithLogitsLoss(
pos_weight=pos_weight*pos_weight_ratio)
criterion = criterion.to(device)
train_loss = 0.0
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
# To device
data = data.to(device)
target = target.to(device)
outputs = model(data)
loss = criterion(outputs, target)
loss.backward()
optimizer.step()
train_loss += loss.item()
# save model
if (epoch + 1) % epochs_step == 0:
# test
train_loss /= len(train_loader)
train_losses.append(train_loss)
model.eval()
outputs = model(test_features)
test_loss = unratio_criterion(outputs, test_target)
test_losses.append(test_loss.item())
outputs = outputs > 0.5
sensitivity = torch.sum(outputs[test_target == 1] == 1).item(
) / torch.sum(test_target == 1).item()
sensitivities.append(sensitivity)
sppecificity = torch.sum(outputs[test_target == 0] == 0).item(
) / torch.sum(test_target == 0).item()
sppecificities.append(sppecificity)
# torch.save(model.state_dict(),
# 'pths/MLP-epoch-{}-acc-{:.4f}-sens-{:.4f}.pth'.format(epoch+1, acc*100, sensitivity*100))
if (epoch + 1) % (epochs_step*10) == 0:
print('Epoch [{}/{}], Loss: {:.4f}, Test Loss: {:.4f}, Sensitivity: {:.4f}, Specificity: {:.4f}'
.format(epoch + 1, num_epochs, train_loss, test_loss.item(), sensitivity, sppecificity))
return train_losses, test_losses, sensitivities, sppecificities
# %%
if train == True:
# torch._dynamo.config.suppress_errors = True
# Count number of positive and negative samples
print('Number of positive samples: {}'.format((train_target == 1).sum()))
print('Number of negative samples: {}'.format((train_target == 0).sum()))
train_losses, test_losses, sensitivities, sppecificities = train_model(
model, criterion, optimizer, num_epochs=num_epochs)
# Plot losses and accuracies separately
fig, ax = plt.subplots(nrows=1, ncols=4, figsize=(30, 5))
ax[0].plot(train_losses)
ax[0].set_xlabel('Epochs')
ax[0].set_ylabel('Train loss')
ax[0].set_yscale('log')
ax[1].plot(test_losses)
ax[1].set_xlabel('Epochs')
ax[1].set_ylabel('Test loss')
ax[2].plot(sensitivities)
ax[2].set_xlabel('Epochs')
ax[2].set_ylabel('Test sensitivity')
ax[3].plot(sppecificities)
ax[3].set_xlabel('Epochs')
ax[3].set_ylabel('Test specificity')
plt.savefig(
'outputs/MLP-{:04}-{:02.4f}.png'.format(num_epochs, test_losses[-1]*100))
plt.show()
torch.save(model.state_dict(), 'pths/MLP-epoch-{}-acc-{:.4f}-sens-{:.4f}.pth'.format(
num_epochs, test_losses[-1]*100, sensitivities[-1]*100))
# %%
def test_model(model, features, target):
# Test in all data
model.eval()
outputs = model(features)
outputs = outputs > 0.5
# Reshape
outputs = outputs.view(-1)
target = target.view(-1)
success = torch.sum(outputs == target).item()
print('Success: {}/{}'.format(success, len(target)))
acc = success / len(target)
print('Accuracy: {:.2f}'.format(acc))
# Confusion matrix
TP = torch.sum((outputs == 1) & (target == 1)).item()
TN = torch.sum((outputs == 0) & (target == 0)).item()
FP = torch.sum((outputs == 1) & (target == 0)).item()
FN = torch.sum((outputs == 0) & (target == 1)).item()
print('TP: {}, TN: {}, FP: {}, FN: {}'.format(TP, TN, FP, FN))
sensitivity = TP / (TP + FN)
specificity = TN / (TN + FP)
print('Sensitivity: {:.2f}, Specificity: {:.2f}'.format(
sensitivity, specificity))
# %%
# Load model
# model.load_state_dict(torch.load('pths/MLP-500-9.5580e-01.pth'))
print('In test set:')
test_model(model, test_features, test_target)
print('\nIn all data:')
test_model(model, torch.Tensor(features).to(
device), torch.Tensor(target).to(device))