-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvelkibaazi.py
53 lines (43 loc) · 2.25 KB
/
velkibaazi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
def MyLSTMEEGNet(nb_classes=4, Chans=14, Samples=641,
dropoutRate=0.5, kernLength=64, F1=8,
D=4, F2=16, norm_rate=0.25, dropoutType='Dropout',
lstm_units=50):
if dropoutType == 'SpatialDropout2D':
dropoutType = SpatialDropout2D
elif dropoutType == 'Dropout':
dropoutType = Dropout
else:
raise ValueError('dropoutType must be one of SpatialDropout2D '
'or Dropout, passed as a string.')
input_main = Input((Chans, Samples, 1))
block1 = Conv2D(25, (1, 5),
input_shape=(Chans, Samples, 1),
kernel_constraint=max_norm(2., axis=(0,1,2)))(input_main)
block1 = BatchNormalization(epsilon=1e-05, momentum=0.9)(block1)
block1 = Activation('elu')(block1)
block1 = MaxPooling2D(pool_size=(1, 2), strides=(1, 2))(block1)
block1 = dropoutType(dropoutRate)(block1)
block2 = Conv2D(50, (1, 5),
kernel_constraint=max_norm(2., axis=(0,1,2)))(block1)
block2 = BatchNormalization(epsilon=1e-05, momentum=0.9)(block2)
block2 = Activation('elu')(block2)
block2 = MaxPooling2D(pool_size=(1, 2), strides=(1, 2))(block2)
block2 = dropoutType(dropoutRate)(block2)
block3 = Conv2D(100, (1, 5),
kernel_constraint=max_norm(2., axis=(0,1,2)))(block2)
block3 = BatchNormalization(epsilon=1e-05, momentum=0.9)(block3)
block3 = Activation('elu')(block3)
block3 = MaxPooling2D(pool_size=(1, 2), strides=(1, 2))(block3)
block3 = dropoutType(dropoutRate)(block3)
block4 = Conv2D(200, (1, 5),
kernel_constraint=max_norm(2., axis=(0,1,2)))(block3)
block4 = BatchNormalization(epsilon=1e-05, momentum=0.9)(block4)
block4 = Activation('elu')(block4)
block4 = MaxPooling2D(pool_size=(1, 2), strides=(1, 2))(block4)
block4 = dropoutType(dropoutRate)(block4)
reshaped = Reshape((block4.shape[2], block4.shape[1] * block4.shape[3]))(block4)
lstm = LSTM(lstm_units, return_sequences=True)(reshaped)
flatten = Flatten()(lstm)
dense = Dense(nb_classes, kernel_constraint=max_norm(norm_rate))(flatten)
output = Activation('linear')(dense)
return Model(inputs=input_main, outputs=output)