Skip to content

Releases: tensorflow/transform

Release 0.6.0

22 Mar 21:40
Compare
Choose a tag to compare

Release 0.6.0

Major Features and Improvements

Bug Fixes and Other Changes

  • Depends on apache-beam[gcp]>=2.4,<3.
  • Trim min/max value in tft.bucketize where the computed number of bucket
    boundaries is more than requested. Updated documentation to clearly indicate
    that the number of buckets is computed using approximate algorithms, and that
    computed number can be more or less than requested.
  • Change the namespace used for Beam metrics from tensorflow_transform to
    tfx.Transform.
  • Update Beam metrics to also log vocabulary sizes.
  • CsvCoder updated to support unicode.

Breaking changes

  • Requires pre-installed TensorFlow >=1.6,<2.

Deprecations

Release 0.5.0

21 Feb 18:42
Compare
Choose a tag to compare

Release 0.5.0

Major Features and Improvements

  • Batching of input instances is now done automatically and dynamically.
  • Added analyzers to compute covarance matrices (tft.covariance) and
    principal components for PCA (tft.pca).
  • CombinerSpec and combine_analyzer now accept multiple inputs/outputs.

Bug Fixes and Other Changes

  • Depends on apache-beam[gcp]>=2.3,<3.
  • Fixes a bug where TransformDataset would not return correct output if the
    output DatasetMetadata contained deferred values (such as vocabularies).
  • Added checks that the prepreprocessing function's outputs all have the same
    size in the batch dimension.
  • Added tft.apply_buckets which takes an input tensor and a list of bucket
    boundaries, and returns bucketized data.
  • tft.bucketize and tft.apply_buckets now set metadata for the output
    tensor, which means the resulting tf.Metadata for the output of these
    functions will contain min and max values based on the number of buckets,
    and also be set to categorical.
  • Testing helper function assertAnalyzeAndTransformResults can now also test
    the content of vocabulary files and other assets.
  • Reduces the number of beam stages needed for certain analyzers, which can be
    a performance bottleneck when transforming many features.
  • Performance improvements in tft.uniques.
  • Fix a bug in tft.bucketize where the bucket boundary could be same as a
    min/max value, and was getting dropped.
  • Allows scaling individual components of a tensor independently with
    tft.scale_by_min_max, tft.scale_to_0_1, and tft.scale_to_z_score.
  • Fix a bug where apply_saved_transform could only be applied in the global
    name scope.
  • Add warning when frequency_threshold that are <= 1. This is a no-op and
    generally reflects mistaking frequency_threshold for a relative frequency
    where in fact it is an absolute frequency.

Breaking changes

  • The interfaces of CombinerSpec and combine_analyzer have changed to allow
    for multiple inputs/outputs.
  • Requires pre-installed TensorFlow >=1.5,<2.

Deprecations

Release 0.4.0

04 Dec 02:38
Compare
Choose a tag to compare

Major Features and Improvements

  • Added a combine_analyzer() that supports user provided combiner, conforming to
    beam.CombinFn(). This allows users to implement custom combiners
    (e.g. median), to complement analyzers (like min, max) that are
    prepackaged in TFT.
  • Quantiles Analyzer (tft.quantiles), with a corresponding tft.bucketize
    mapper.

Bug Fixes and Other Changes

  • Depends on apache-beam[gcp]>=2.2,<3.
  • Fixes some KeyError issues that appeared in certain circumstances when one
    would call AnalyzeAndTransformDataset (due to a now-fixed Apache Beam [bug]
    (https://issues.apache.org/jira/projects/BEAM/issues/BEAM-2966)).
  • Allow all functions that accept and return tensors, to accept an optional
    name scope, in line with TensorFlow coding conventions.
  • Update examples to construct input functions by hand instead of using helper
    functions.
  • Change scale_by_min_max/scale_to_0_1 to return the average(min, max) of the
    range in case all values are identical.
  • Added export of serving model to examples.
  • Use "core" version of feature columns (tf.feature_column instead of
    tf.contrib) in examples.
  • A few bug fixes and improvements for coders regarding Python 3.

Breaking changes

  • Requires pre-installed TensorFlow >= 1.4.
  • No longer distributing a WHL file in PyPI. Only doing a source distribution
    which should however be compatible with all platforms (ie you are still able
    to pip install tensorflow-transform and use requirements.txt or setup.py
    files for environment setup).
  • Some functions now introduce a new name scope when they did not before so the
    names of tensors may change. This will only affect you if you directly lookup
    tensors by name in the graph produced by tf.Transform.
  • Various Analyzer Specs (_NumericCombineSpec, _UniquesSpec, _QuantilesSpec)
    are now private. Analyzers are accessible only via the top-level TFT functions
    (min, max, sum, size, mean, var, uniques, quantiles).

Upcoming deprecations

  • The serving_input_fns on tensorflow_transform/saved/input_fn_maker.py will
    be removed on a future version and should not be used on new code,
    see the examples directory for details on how to migrate your code to define
    their own serving functions.

Tensorflow Transform 0.3.1

20 Oct 20:58
Compare
Choose a tag to compare

Release 0.3.1

Major Features and Improvements

  • We now provide helper methods for creating serving_input_receiver_fn for use
    with tf.estimator. These mirror the existing functions targeting the
    legacy tf.contrib.learn.estimators-- i.e. for each *_serving_input_fn()
    in input_fn_maker there is now also a *_serving_input_receiver_fn().

Bug Fixes and Other Changes

  • Introduced tft.apply_vocab this allows users to separately apply a single
    vocabulary (as generated by tft.uniques) to several different columns.
  • Provide a source distribution tar tensorflow-transform-X.Y.Z.tar.gz.

Breaking changes

  • The default prefix for tft.string_to_int vocab_filename changed from
    vocab_string_to_int to vocab_string_to_int_uniques. To make your pipelines
    resilient to implementation details please set vocab_filename if you are using
    the generated vocab_filename on a downstream component.

Tensorflow Transform 0.3.0

11 Oct 03:20
Compare
Choose a tag to compare

Release 0.3.0

Major Features and Improvements

  • Added hash_strings mapper.
  • Write vocabularies as asset files instead of constants in the SavedModel.

Bug Fixes and Other Changes

  • 'tft.tfidf' now adds 1 to idf values so that terms in every document in the
    corpus have a non-zero tfidf value.
  • Performance and memory usage improvement when running with Beam runners that
    use multi-threaded workers.
  • Performance optimizations in ExampleProtoCoder.
  • Depends on apache-beam[gcp]>=2.1.1,<3.
  • Depends on protobuf>=3.3.0<4.
  • Depends on six>=1.9,<1.11.

Breaking changes

  • Requires pre-installed TensorFlow >= 1.3.
  • Removed tft.map use tft.apply_function instead (as needed).
  • Removed tft.tfidf_weights use tft.tfidf instead.
  • beam_metadata_io.WriteMetadata now requires a second pipeline argument
    (see examples).
  • A Beam bug will now affect users who call AnalyzeAndTransformDataset in
    certain circumstances. Roughly speaking, if you call beam.Pipeline() at
    some point (as all our examples do) you will not experience this bug. The
    bug is characterized by an error similar to
    KeyError: (u'AnalyzeAndTransformDataset/AnalyzeDataset/ComputeTensorValues/Extract[Maximum:0]', None)
    This bug will be fixed in Beam 2.2.

TensorFlow Transform 0.1.10

02 Jun 19:14
Compare
Choose a tag to compare

Release 0.1.10

Major Features and Improvements

  • Add json-example serving input functions to TF.Transform.
  • Add variance analyzer to tf.transform.

Bug Fixes and Other Changes

  • Remove duplication in output of tft.tfidf.
  • Ensure ngrams output dense_shape is greater than or equal to 0.
  • Alters the behavior and interface of tensorflow_transform.mappers.ngrams.
  • Use apache-beam[gcp] >=2,<3
  • Making TF Parallelism runner-dependent.
  • Fixes issue with csv serving input function.

TensorFlow Transform 0.1.9

02 Jun 19:15
Compare
Choose a tag to compare

Release 0.1.9

Major Features and Improvements

  • Refactor internals to remove Column and Statistic classes

Bug Fixes and Other Changes

  • Remove collections from graph to avoid warnings
  • Return float32 from tfidf_weights
  • Update tensorflow_transform to use tf.saved_model APIs.
  • Add default values on example proto coder.