diff --git a/.github/workflows/ttnn-run-sweeps.yaml b/.github/workflows/ttnn-run-sweeps.yaml index 6c610a27c08..e0e20de7d1f 100644 --- a/.github/workflows/ttnn-run-sweeps.yaml +++ b/.github/workflows/ttnn-run-sweeps.yaml @@ -353,6 +353,7 @@ on: - eltwise.binary.fmod.fmod_unary - eltwise.binary.fmod.fmod_unary_sharded - eltwise.binary.floor_divide.floor_divide_pytorch2 + - eltwise.binary.floor_divide.floor_divide - eltwise.binary.logaddexp.logaddexp - eltwise.binary.logaddexp2.logaddexp2 - eltwise.binary.ldexp.ldexp diff --git a/tests/sweep_framework/sweeps/eltwise/binary/floor_divide/floor_divide.py b/tests/sweep_framework/sweeps/eltwise/binary/floor_divide/floor_divide.py new file mode 100644 index 00000000000..74adef94f14 --- /dev/null +++ b/tests/sweep_framework/sweeps/eltwise/binary/floor_divide/floor_divide.py @@ -0,0 +1,108 @@ +# SPDX-FileCopyrightText: © 2025 Tenstorrent Inc. + +# SPDX-License-Identifier: Apache-2.0 + +from typing import Optional, Tuple +from functools import partial + +import torch +import random +import ttnn +from tests.sweep_framework.sweep_utils.utils import gen_shapes, sanitize_shape_rm +from tests.tt_eager.python_api_testing.sweep_tests.generation_funcs import gen_func_with_cast_tt + +from tests.ttnn.utils_for_testing import check_with_pcc, start_measuring_time, stop_measuring_time +from models.utility_functions import torch_random, is_wormhole_b0 + +# Override the default timeout in seconds for hang detection. +TIMEOUT = 30 + +random.seed(0) + + +# Parameters provided to the test vector generator are defined here. +# They are defined as dict-type suites that contain the arguments to the run function as keys, and lists of possible inputs as values. +# Each suite has a key name (in this case "suite_1" and "suite_2") which will associate the test vectors to this specific suite of inputs. +# Developers can create their own generator functions and pass them to the parameters as inputs. +parameters = { + "nightly": { + "input_shape": [[1, 1, 32, 32], [1, 1, 320, 384], [1, 3, 320, 384]], + "input_a_dtype": [ttnn.bfloat16], + "input_b_dtype": [ttnn.bfloat16], + "input_layout": [ttnn.TILE_LAYOUT, ttnn.ROW_MAJOR_LAYOUT], + "input_a_memory_config": [ttnn.DRAM_MEMORY_CONFIG, ttnn.L1_MEMORY_CONFIG], + "input_b_memory_config": [ttnn.DRAM_MEMORY_CONFIG, ttnn.L1_MEMORY_CONFIG], + "output_memory_config": [ttnn.DRAM_MEMORY_CONFIG, ttnn.L1_MEMORY_CONFIG], + }, +} + + +def mesh_device_fixture(): + device = ttnn.open_device(device_id=0) + assert ttnn.device.is_wormhole_b0(device) or ttnn.device.is_blackhole(device), "This op is not available for GS" + yield (device, "Wormhole_B0", "Blackhole") + ttnn.close_device(device) + del device + + +# Invalidate vector is called during the generation phase where each vector will be passed in. +# If invalidated, the vector will still be stored but will be skipped. +# Returns False, None if the vector is valid, and True, str with a reason for invalidation if it is invalid. +def invalidate_vector(test_vector) -> Tuple[bool, Optional[str]]: + if test_vector["input_layout"] == ttnn.ROW_MAJOR_LAYOUT: + return True, "Unary operation requires tensor to be in Tile layout when working with non-sharded input tensor" + return False, None + + +# This is the run instructions for the test, defined by the developer. +# The run function must take the above-defined parameters as inputs. +# The runner will call this run function with each test vector, and the returned results from this function will be stored. +# If you defined a mesh_device_fixture above, the object you yielded will be passed into this function as 'device'. Otherwise, it will be the default ttnn device opened by the infra. +def run( + input_shape, + input_a_dtype, + input_b_dtype, + input_layout, + input_a_memory_config, + input_b_memory_config, + output_memory_config, + *, + device, +) -> list: + if input_layout == ttnn.ROW_MAJOR_LAYOUT: + input_shape = sanitize_shape_rm(input_shape) + + torch_input_tensor_a = gen_func_with_cast_tt( + partial(torch_random, low=-100, high=100, dtype=torch.float32), input_a_dtype + )(input_shape) + + torch_input_tensor_b = gen_func_with_cast_tt( + partial(torch_random, low=-100, high=100, dtype=torch.float32), input_a_dtype + )(input_shape) + + golden_function = ttnn.get_golden_function(ttnn.floor_div) + torch_output_tensor = golden_function(torch_input_tensor_a, torch_input_tensor_b) + + input_tensor_a = ttnn.from_torch( + torch_input_tensor_a, + dtype=input_a_dtype, + layout=input_layout, + device=device, + memory_config=input_a_memory_config, + ) + + input_tensor_b = ttnn.from_torch( + torch_input_tensor_b, + dtype=input_b_dtype, + layout=input_layout, + device=device, + memory_config=input_b_memory_config, + ) + + start_time = start_measuring_time() + output_tensor = ttnn.floor_div(input_tensor_a, input_tensor_b, memory_config=output_memory_config) + e2e_perf = stop_measuring_time(start_time) + + output_tensor = ttnn.to_torch(output_tensor) + + return [check_with_pcc(torch_output_tensor, output_tensor, 0.99), e2e_perf] diff --git a/tests/sweep_framework/sweeps/eltwise/binary/remainder/remainder_shape.py b/tests/sweep_framework/sweeps/eltwise/binary/remainder/remainder_shape.py index dc33c6ad7d1..efc92ddd8a2 100644 --- a/tests/sweep_framework/sweeps/eltwise/binary/remainder/remainder_shape.py +++ b/tests/sweep_framework/sweeps/eltwise/binary/remainder/remainder_shape.py @@ -1,4 +1,4 @@ -# SPDX-FileCopyrightText: © 2024 Tenstorrent Inc. +# SPDX-FileCopyrightText: © 2025 Tenstorrent Inc. # SPDX-License-Identifier: Apache-2.0 @@ -39,7 +39,7 @@ def mesh_device_fixture(): device = ttnn.open_device(device_id=0) - assert ttnn.device.is_wormhole_b0(device) and ttnn.device.is_blackhole(device), "This op is not available for GS" + assert ttnn.device.is_wormhole_b0(device) or ttnn.device.is_blackhole(device), "This op is not available for GS" yield (device, "Wormhole_B0", "Blackhole") ttnn.close_device(device) del device @@ -51,8 +51,6 @@ def mesh_device_fixture(): def invalidate_vector(test_vector) -> Tuple[bool, Optional[str]]: if test_vector["input_layout"] == ttnn.ROW_MAJOR_LAYOUT: return True, "Unary operation requires tensor to be in Tile layout when working with non-sharded input tensor" - if test_vector["input_a_dtype"] == ttnn.bfloat8_b: - return True, "Input_tensor_a doesn't support bfloat8_b" return False, None