-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
200 lines (171 loc) · 6.22 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import argparse
from datetime import datetime
import numpy as np
import os
import shutil
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.tensorboard import SummaryWriter
from utils.objects import load_params, get_data_params
from utils.dataloader import DataLoader
from models.model import CharCNNLSTM
parser = argparse.ArgumentParser()
parser.add_argument(
"-c",
"--config",
type=str,
default="cfg/config_experiment.yaml",
help="Path to the config file for the experiment",
)
parser.add_argument(
"-u",
"--update_objects",
action="store_true",
help="If entered, words and characters objects are recomputed",
)
parser.add_argument(
"--debug", action="store_true",
)
parser.add_argument(
"--log_interval", type=int, default=50, help="Logging interval",
)
parser.add_argument(
"--path_ckpts",
type=str,
default="ckpts",
help="Path to checkpoints folder",
)
parser.add_argument(
"--gdrive",
type=str,
help=(
"Location to mount google drive to. Checkpoints will be saved on "
"your drive"
),
)
args = parser.parse_args()
config = load_params(args.config)
path_ckpts = args.path_ckpts
if args.gdrive:
from google.colab import drive
drive.mount(args.gdrive)
path_ckpts = os.path.join(
args.gdrive, "My Drive/char_cnn_lstm", args.path_ckpts
)
data_params, path_objects = get_data_params(
config["data"], args.update_objects
)
# Initialize checkpoint
ckpt_name = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
path_ckpt = os.path.join(path_ckpts, ckpt_name)
path_ckpt_data = os.path.join(path_ckpt, "data")
path_model = os.path.join(path_ckpt, "model.pt")
os.makedirs(path_ckpt_data)
path_ckpt_config = os.path.join(path_ckpt, "config.yaml")
path_idx2char = os.path.join(path_objects, "idx2char.pkl")
path_idx2word = os.path.join(path_objects, "idx2word.pkl")
path_objects_params = os.path.join(path_objects, "data.yaml")
shutil.copy2(path_idx2char, path_ckpt_data)
shutil.copy2(path_idx2word, path_ckpt_data)
shutil.copy2(path_objects_params, path_ckpt_data)
shutil.copy2(args.config, path_ckpt)
print(f"Initialized checkpoint {path_ckpt}")
# create data loaders
batch_size = config["training"]["batch_size"]
seq_len = config["training"]["seq_len"]
train_loader = DataLoader(path_objects, "train", batch_size, seq_len)
val_loader = DataLoader(path_objects, "val", 1, seq_len)
char_vocab_size = data_params["char_vocab_size"]
word_vocab_size = data_params["word_vocab_size"]
# instantiate model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Device in use : {device}")
model = CharCNNLSTM(
char_vocab_size=char_vocab_size,
word_vocab_size=word_vocab_size,
**config["network"],
).to(device)
# define loss and optimizer
loss_function = nn.CrossEntropyLoss()
lr = config["optimizer"]["learning_rate"]
clip_grad = config["optimizer"]["clip_grad"]
optimizer = optim.SGD(model.parameters(), lr=lr)
# initialize tensorboard and save model graph
writer = SummaryWriter(os.path.join(path_ckpts, ckpt_name))
sample_input, _ = train_loader[0]
sample_hidden = model.init_hidden(batch_size)
sample_hidden = tuple([h.detach().to(device) for h in sample_hidden])
writer.add_graph(model, (sample_input.to(device), sample_hidden))
def train(loader, global_step):
model.train()
total_loss = 0
current_loss = 0
hidden = model.init_hidden(batch_size)
for i in range(len(loader)):
optimizer.zero_grad()
inputs, targets = loader[i]
inputs = inputs.to(device)
targets = targets.to(device)
# repackaging hidden state
hidden = tuple([h.detach().to(device) for h in hidden])
outputs, hidden = model(inputs, hidden, debug=args.debug)
loss = loss_function(outputs.view(-1, word_vocab_size), targets)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), clip_grad)
optimizer.step()
current_loss += loss.item()
total_loss += loss.item()
if (i + 1) % args.log_interval == 0:
avg_loss = current_loss / args.log_interval
print(f"Training step {i + 1}/{len(loader)}, loss: {avg_loss}")
current_loss = 0
# tensorboard logging
writer.add_scalar(f"loss/train", avg_loss, global_step + i)
writer.add_scalar(
"perplexity/train", np.exp(avg_loss), global_step + i
)
return total_loss / len(loader)
def evaluate(loader, global_step):
model.eval()
total_loss = 0
hidden = model.init_hidden(1)
with torch.no_grad():
for i in range(len(loader)):
inputs, targets = loader[i]
inputs = inputs.to(device)
targets = targets.to(device)
# repackaging hidden state
hidden = tuple([h.detach().to(device) for h in hidden])
outputs, hidden = model(inputs, hidden, debug=args.debug)
loss = loss_function(outputs.view(-1, word_vocab_size), targets)
total_loss += len(outputs) * loss.item()
avg_loss = total_loss / len(loader)
avg_perplexity = np.exp(avg_loss)
print(f"Validation: CE={avg_loss}, PPL={avg_perplexity}")
writer.add_scalar("loss/val", avg_loss, global_step)
writer.add_scalar("perplexity/val", avg_perplexity, global_step)
return avg_loss
best_perplexity = None
n_epochs = config["training"]["n_epochs"]
for i in range(n_epochs):
print(f"\nEpoch {i+1}/{n_epochs}")
writer.add_scalar("learning_rate", lr, i * len(train_loader))
train(train_loader, i * len(train_loader))
val_loss = evaluate(val_loader, (i + 1) * len(train_loader))
val_perplexity = np.exp(val_loss)
if not best_perplexity:
best_perplexity = val_perplexity
if val_perplexity < best_perplexity:
if val_perplexity > best_perplexity - 1:
lr /= 2
optimizer = optim.SGD(model.parameters(), lr=lr)
print(f"Learning rate reduced to {lr}")
best_perplexity = val_perplexity
with open(path_model, "wb") as f:
torch.save(model, f)
print(f"Model saved to {path_model}")
writer.close()
if args.gdrive:
shutil.make_archive(path_ckpt, "zip", path_ckpts, ckpt_name)
print(f"Zipfile saved to {path_ckpt}.zip")