-
Notifications
You must be signed in to change notification settings - Fork 22
/
example.py
154 lines (116 loc) · 5.99 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
from __future__ import print_function
import numpy as np
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import os
from torchvision import datasets, transforms
from model import *
from dataset import NMNIST
from tensorboardX import SummaryWriter
def train(args, model, device, train_loader, optimizer, epoch, writer):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
# necessary for general dataset: broadcast input
data, _ = torch.broadcast_tensors(data, torch.zeros((steps,) + data.shape))
data = data.permute(1, 2, 3, 4, 0)
output = model(data)
loss = F.cross_entropy(output, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data / steps), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
writer.add_scalar('Train Loss /batchidx', loss, batch_idx + len(train_loader) * epoch)
def test(args, model, device, test_loader, epoch, writer):
model.eval()
test_loss = 0
correct = 0
isEval = False
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
data, _ = torch.broadcast_tensors(data, torch.zeros((steps,) + data.shape))
data = data.permute(1, 2, 3, 4, 0)
output = model(data)
test_loss += F.cross_entropy(output, target, reduction='sum').item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
writer.add_scalar('Test Loss /epoch', test_loss, epoch)
writer.add_scalar('Test Acc /epoch', 100. * correct / len(test_loader.dataset), epoch)
for i, (name, param) in enumerate(model.named_parameters()):
if '_s' in name:
writer.add_histogram(name, param, epoch)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
def adjust_learning_rate(args, optimizer, epoch):
"""Sets the learning rate to the initial LR decayed by 10 every 20 epochs"""
lr = args.lr * (0.1 ** (epoch // 35))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def main():
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=200, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=800, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=1e-3, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--save-model', action='store_true', default=True,
help='For Saving the current Model')
args = parser.parse_args()
use_cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
device = torch.device("cuda" if use_cuda else "cpu")
kwargs = {'num_workers': 2, 'pin_memory': True} if use_cuda else {}
writer = SummaryWriter('<Tensorboard log path>')
train_loader = torch.utils.data.DataLoader(
datasets.CIFAR10('./data', train=True, download=True,
transform=transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(32, padding=4),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.247, 0.243, 0.261))
])),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.CIFAR10('./data', train=False,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.247, 0.243, 0.261))
])),
batch_size=args.test_batch_size, shuffle=True, **kwargs)
model = resnet19().to(device)
optimizer = optim.Adam(model.parameters(), lr=args.lr)
checkpoint_path = '<model path>'
if checkpoint_path is not None and os.path.isdir(checkpoint_path):
checkpoint = torch.load(checkpoint_path)
model.load_state_dict(checkpoint)
print('Model loaded.')
for epoch in range(401, args.epochs + 1):
train(args, model, device, train_loader, optimizer, epoch, writer)
test(args, model, device, test_loader, epoch, writer)
writer.close()
if (args.save_model):
torch.save(model.state_dict(), "<state dict save path>")
torch.save(model, "<model save path>")
if __name__ == '__main__':
main()