-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_leave_one_out_predicate_exp.py
358 lines (326 loc) · 16.3 KB
/
evaluate_leave_one_out_predicate_exp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
#!/usr/bin/env python
__author__ = 'jesse'
''' Train mult-modal mahalanobis-based neighbor classifiers.
'''
import argparse
import matplotlib.pyplot as plt
import matplotlib.lines as mlines
import numpy as np
import os
import pickle
import sys
from scipy.stats import ttest_ind
# Returns non-negative kappa.
def get_signed_kappa(cm):
s = float(cm[0][0] + cm[0][1] + cm[1][0] + cm[1][1])
assert s > 0
po = (cm[1][1] + cm[0][0]) / s
ma = (cm[1][1] + cm[1][0]) / s
mb = (cm[0][0] + cm[0][1]) / s
pe = (ma + mb) / s
kappa = (po - pe) / (1 - pe) if pe < 1 else 0
return kappa
# Given a confusion matrix, return the precision, recall and f1.
def get_p_r_f1(cm):
p = float(cm[1][1]) / (cm[1][1] + cm[0][1]) if (cm[1][1] + cm[0][1]) > 0 else 0
r = float(cm[1][1]) / (cm[1][1] + cm[1][0]) if (cm[1][1] + cm[1][0]) > 0 else 0
f1 = 2 * (p * r) / (p + r) if (p + r) > 0 else 0
return p, r, f1
def get_labels(indir, alt_fn):
with open(os.path.join(indir, "labels.pickle"), 'rb') as f:
labels = pickle.load(f)
if alt_fn is not None:
with open(alt_fn, 'rb') as f:
alt_l = pickle.load(f)
for oidx in alt_l:
labels[oidx] = alt_l[oidx]
return labels
def main():
nb_objects = 32
expected_trials = 100 # 10
# Convert flags to local variables.
data_dir = FLAGS_data_dir
results_dir = FLAGS_results_dir
metrics = FLAGS_metrics.split(',')
alternative_labels = FLAGS_alternative_labels
preds = FLAGS_preds
trange = FLAGS_range.split(',')
# Headers to use for figure making
headers = {"uniform": "random (uniform)",
"cos_top3_kappa": "guided (lex)", # "prior_kappa": "prior",
"ba": "guided (ba)", "kba": "guided (lex+ba)"}
# Read in labels and decision results.
labels = get_labels(data_dir, alternative_labels)
with open(os.path.join(data_dir, 'predicates.pickle'), 'rb') as f:
predicates = pickle.load(f)
if preds is None:
preds = predicates[:]
else:
preds = preds.split(',')
nb_predicates = len(predicates)
# Read in results per predicate, calculating num contexts, num behaviors, and performance.
predicates_evaluated = []
nb_train = 0
nb_test = 0
weights = None # list of weighting scheme names
thresholds = None # list of independent variable adjusted during experiment
nb_tr_c = {} # weight, then list parallel to thresholds
nb_tr_b = {}
nb_tr_t = {}
nb_te_c = {}
nb_te_b = {}
nb_te_t = {}
avg_k = {}
avg_f = {}
avg_a = {}
avg_kpt = {}
pred_ks = {} # kappas per pidx
for pidx in range(nb_predicates):
if predicates[pidx] not in preds:
continue
try:
with open(os.path.join(results_dir, str(pidx) + ".pickle"), 'rb') as f:
wns, tr_c_used, tr_b_used, tr_t_used, te_c_used, te_b_used, te_t_used, decisions = pickle.load(f)
predicates_evaluated.append(pidx)
nb_train += nb_objects - len(decisions[wns[0]][decisions[wns[0]].keys()[0]])
nb_test += len(decisions[wns[0]][decisions[wns[0]].keys()[0]])
pred_ks[pidx] = {}
if weights is None:
weights = wns
thresholds = sorted(tr_c_used[weights[0]].keys())
for w in weights:
nb_tr_c[w] = [0 for _ in range(len(thresholds))]
nb_tr_b[w] = [0 for _ in range(len(thresholds))]
nb_tr_t[w] = [0 for _ in range(len(thresholds))]
nb_te_c[w] = [0 for _ in range(len(thresholds))]
nb_te_b[w] = [0 for _ in range(len(thresholds))]
nb_te_t[w] = [0 for _ in range(len(thresholds))]
avg_k[w] = [0 for _ in range(len(thresholds))]
avg_f[w] = [0 for _ in range(len(thresholds))]
avg_a[w] = [0 for _ in range(len(thresholds))]
avg_kpt[w] = [0 for _ in range(len(thresholds))]
for w in weights:
pred_ks[pidx][w] = []
nb_tr_c[w] = [nb_tr_c[w][idx] +
np.mean([np.mean(
[len(tr_c_used[w][thresholds[idx]][oidx][trial])
for trial in range(len(tr_c_used[w][thresholds[idx]][oidx]))])
for oidx in tr_c_used[w][thresholds[idx]].keys()])
for idx in range(len(thresholds))]
nb_tr_b[w] = [nb_tr_b[w][idx] +
np.mean([np.mean(
[len(tr_b_used[w][thresholds[idx]][oidx][trial])
for trial in range(len(tr_b_used[w][thresholds[idx]][oidx]))])
for oidx in tr_b_used[w][thresholds[idx]].keys()])
for idx in range(len(thresholds))]
nb_tr_t[w] = [nb_tr_t[w][idx] +
np.mean([np.mean(
[tr_t_used[w][thresholds[idx]][oidx][trial]
for trial in range(len(tr_t_used[w][thresholds[idx]][oidx]))])
for oidx in tr_t_used[w][thresholds[idx]].keys()])
for idx in range(len(thresholds))]
nb_te_c[w] = [nb_te_c[w][idx] +
np.mean([np.mean(
[len(te_c_used[w][thresholds[idx]][oidx][trial])
for trial in range(len(te_c_used[w][thresholds[idx]][oidx]))])
for oidx in te_c_used[w][thresholds[idx]].keys()])
for idx in range(len(thresholds))]
nb_te_b[w] = [nb_te_b[w][idx] +
np.mean([np.mean(
[len(te_b_used[w][thresholds[idx]][oidx][trial])
for trial in range(len(te_b_used[w][thresholds[idx]][oidx]))])
for oidx in te_b_used[w][thresholds[idx]].keys()])
for idx in range(len(thresholds))]
nb_te_t[w] = [nb_te_t[w][idx] +
np.mean([np.mean(
[te_t_used[w][thresholds[idx]][oidx][trial]
for trial in range(len(te_t_used[w][thresholds[idx]][oidx]))])
for oidx in te_t_used[w][thresholds[idx]].keys()])
for idx in range(len(thresholds))]
# Gets the average agreement scores per object for each timestep.
for idx in range(len(thresholds)):
nb_trials = expected_trials # WARNING: specific to current experimental setup
tok = 0
tof = 0
toa = 0
tkpt = 0
trial_kappas = []
for trial in range(nb_trials):
cm = [[0, 0], [0, 0]]
for oidx in range(32):
if oidx in decisions[w][thresholds[idx]]:
d = decisions[w][thresholds[idx]][oidx][trial]
cm[labels[oidx][pidx]][d] += 1
ok = get_signed_kappa(cm)
_, _, of = get_p_r_f1(cm)
oa = (cm[0][0] + cm[1][1]) / float(cm[0][0] + cm[0][1] + cm[1][0] + cm[1][1])
tok += ok
tof += of
toa += oa
tkpt += ok / nb_te_t[w][idx]
trial_kappas.append(ok)
avg_k[w][idx] += tok / nb_trials
avg_f[w][idx] += tof / nb_trials
avg_a[w][idx] += toa / nb_trials
avg_kpt[w][idx] += tkpt / nb_trials
pred_ks[pidx][w].append(trial_kappas)
except IOError:
pass
# Get averages.
nb_train /= float(len(predicates_evaluated))
nb_test /= float(len(predicates_evaluated))
for w in weights:
nb_tr_c[w] = [nb_tr_c[w][idx] / float(len(predicates_evaluated)) for idx in range(len(thresholds))]
nb_tr_b[w] = [nb_tr_b[w][idx] / float(len(predicates_evaluated)) for idx in range(len(thresholds))]
nb_tr_t[w] = [nb_tr_t[w][idx] / float(len(predicates_evaluated)) for idx in range(len(thresholds))]
nb_te_c[w] = [nb_te_c[w][idx] / float(len(predicates_evaluated)) for idx in range(len(thresholds))]
nb_te_b[w] = [nb_te_b[w][idx] / float(len(predicates_evaluated)) for idx in range(len(thresholds))]
nb_te_t[w] = [nb_te_t[w][idx] / float(len(predicates_evaluated)) for idx in range(len(thresholds))]
avg_k[w] = [avg_k[w][idx] / float(len(predicates_evaluated)) for idx in range(len(thresholds))]
avg_f[w] = [avg_f[w][idx] / float(len(predicates_evaluated)) for idx in range(len(thresholds))]
avg_a[w] = [avg_a[w][idx] / float(len(predicates_evaluated)) for idx in range(len(thresholds))]
avg_kpt[w] = [avg_kpt[w][idx] / float(len(predicates_evaluated)) for idx in range(len(thresholds))]
print "evaluated " + str(len(predicates_evaluated)) + " predicates"
print "predicates trained on an average of " + str(nb_train) + " objects and tested on " + str(nb_test)
# Display results.
if trange[0] == '':
trange[0] = 0
elif trange[1] == '':
trange[1] = len(thresholds)
trange = [int(t) for t in trange]
for metric in metrics:
print "metric: " + metric
if metric == "trc":
m = nb_tr_c
elif metric == "trb":
m = nb_tr_b
elif metric == "trt":
m = nb_tr_t
elif metric == "tec":
m = nb_te_c
elif metric == "teb":
m = nb_te_b
elif metric == "tet":
m = nb_te_t
elif metric == "k":
m = avg_k
# calculate majority class 'no' baseline and add it to 'k' graph
no = 0
yes = 0
for pidx in predicates_evaluated:
if predicates[pidx] not in preds:
continue
cm_no = [[0, 0], [0, 0]]
cm_yes = [[0, 0], [0, 0]]
for oidx in range(32):
if labels[oidx][pidx] == 1 or labels[oidx][pidx] == 0:
cm_no[labels[oidx][pidx]][0] += 1
cm_yes[labels[oidx][pidx]][1] += 1
no += get_signed_kappa(cm_no)
yes += get_signed_kappa(cm_yes)
# m['no'] = [no / float(len(predicates_evaluated)) for _ in range(len(thresholds))]
# m['yes'] = [yes / float(len(predicates_evaluated)) for _ in range(len(thresholds))]
# Perform statistic tests between weighting schemes.
print "statistical test results:"
for idx in range(trange[0], trange[1]):
print "\tsample at time " + str(thresholds[idx])
for widx in range(len(m.keys())):
wi = m.keys()[widx]
for wjdx in range(widx + 1, len(m.keys())):
wj = m.keys()[wjdx]
print "\t\t" + wi + " against " + wj
rel_preds = []
for pidx in pred_ks.keys():
t, p = ttest_ind(pred_ks[pidx][wi][idx],
pred_ks[pidx][wj][idx])
if p <= 0.05:
rel_preds.append((pidx, p))
if len(rel_preds) > 0:
print '\n\t\t\t' + '\n\t\t\t'.join([predicates[pidx] + " (" + str(p) + ")"
for pidx, p in rel_preds])
# Find the predicates for this weight
print "preds for which weight performance kappa exceeds uniform:"
for w in m.keys():
if w != 'uniform':
preds = []
for pidx in pred_ks.keys():
if (sum([sum([tk for tk in tks]) for tks in pred_ks[pidx][w][trange[0]:trange[1]]]) >
sum([sum([tk for tk in tks]) for tks in pred_ks[pidx]['uniform'][trange[0]:trange[1]]])):
preds.append(predicates[pidx])
print '\t', w, ','.join(preds)
elif metric == "f":
m = avg_f
elif metric == "a":
m = avg_a
elif metric == "kpt":
m = avg_kpt
else:
sys.exit("Unrecognized metric")
print "average metric result:"
legend = []
for w in m.keys():
if headers is None or w in headers.keys():
print "\t" + w + ": " + str(sum(m[w]) / len(m[w])) # average
plt.plot(thresholds[trange[0]:trange[1]], m[w][trange[0]:trange[1]])
legend.append(headers[w])
plt.legend(legend)
plt.ylabel(metric)
plt.xlabel("allowed time (s)")
plt.savefig(os.path.join(results_dir, metric + ".pdf"), bbox_inches='tight')
plt.show()
# Show kappa plot with error bars.
err_k = {}
legend_handles = []
ax = plt.figure().gca()
ax.set_xticks(thresholds[trange[0]:trange[1]])
# ax.set_yticks(np.arange(0.668, 0.688, 0.005)) # Average
# ax.set_yticks(np.arange(0.38, 0.43, 0.01)) # 'red'
# ax.set_yticks(np.arange(0.668, 0.688, 0.005)) # 'full'
markers = ['o', 'v', 's', 'D']
colors = ['b', 'r', 'g', 'k']
midx = 0
for w in avg_k.keys():
if headers is None or w in headers.keys():
err_k[w] = [np.mean([np.std([pred_ks[pidx][w][idx][t] for t in range(expected_trials)])
for pidx in pred_ks.keys()]) for idx in range(len(thresholds))]
plt.plot(thresholds[trange[0]:trange[1]], avg_k[w][trange[0]:trange[1]],
markers[midx] + colors[midx] + '-')
plt.plot(thresholds[trange[0]:trange[1]],
np.sum([avg_k[w][trange[0]:trange[1]], err_k[w][trange[0]:trange[1]]], axis=0),
colors[midx] + '--')
plt.plot(thresholds[trange[0]:trange[1]],
np.sum([avg_k[w][trange[0]:trange[1]], np.negative(err_k[w][trange[0]:trange[1]])], axis=0),
colors[midx] + '--')
ll = mlines.Line2D([], [], color=colors[midx], marker=markers[midx],
markersize=10, label=headers[w])
legend_handles.append(ll)
midx += 1
plt.legend(handles=legend_handles)
for label in (plt.subplot().get_xticklabels() + plt.subplot().get_yticklabels()):
label.set_fontsize(18)
# plt.ylim([y_min, y_max])
# plt.xlim([x_min, x_max])
plt.ylabel("Recognition Performance (kappa)", fontsize=23)
plt.xlabel("Exploration Budget (seconds)", fontsize=23)
plt.legend(loc=4, numpoints=1, fontsize=25)
plt.grid(True)
plt.savefig(os.path.join(results_dir, "error_bars_grid.pdf"), bbox_inches='tight')
plt.show()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir', type=str, required=True,
help="data directory")
parser.add_argument('--results_dir', type=str, required=True,
help="the object id held out for testing")
parser.add_argument('--metrics', type=str, required=True,
help="the metrics to plot")
parser.add_argument('--alternative_labels', type=str, required=False,
help="specify labels pickle; labels in this pickle will override defaults")
parser.add_argument('--preds', type=str, required=False,
help="specify the predicates to gather info from")
parser.add_argument('--range', type=str, required=False,
help="comma-separated threshold range indices; blank spans")
args = parser.parse_args()
for k, v in vars(args).items():
globals()['FLAGS_%s' % k] = v
main()