-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpretrain_meta_critic.py
214 lines (192 loc) · 7.77 KB
/
pretrain_meta_critic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import os
import numpy as np
import click
import json, time
import torch
import random
import multiprocessing as mp
from itertools import product
import glob, ast
from rlkit.envs import ENVS
from rlkit.envs.wrappers import NormalizedBoxEnv
from rlkit.torch.networks import FlattenMlp
import rlkit.torch.pytorch_util as ptu
from configs.default import default_config
from numpy.random import default_rng
from rlkit.data_management.env_replay_buffer import MultiTaskReplayBuffer
from pathlib import Path
rng = default_rng()
def global_seed(seed=0):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
def experiment(variant, seed=None):
env = NormalizedBoxEnv(ENVS[variant['env_name']](**variant['env_params']))
if seed is not None:
global_seed(seed)
env.seed(seed)
tasks = env.get_all_task_idx()
obs_dim = int(np.prod(env.observation_space.shape))
action_dim = int(np.prod(env.action_space.shape))
reward_dim = 1
latent_dim = variant['latent_size']
os.environ['CUDA_VISIBLE_DEVICES'] = str(variant['util_params']['gpu_id'])
ptu.set_gpu_mode(variant['util_params']['use_gpu'], variant['util_params']['gpu_id'])
DEBUG = variant['util_params']['debug']
os.environ['DEBUG'] = str(int(DEBUG))
net_size = variant['net_size']
qf1 = FlattenMlp(
hidden_sizes=[net_size, net_size, net_size],
input_size=obs_dim + action_dim + latent_dim,
output_size=1,
)
qf2 = FlattenMlp(
hidden_sizes=[net_size, net_size, net_size],
input_size=obs_dim + action_dim + latent_dim,
output_size=1,
)
vf = FlattenMlp(
hidden_sizes=[net_size, net_size, net_size],
input_size=obs_dim + latent_dim,
output_size=1,
)
c = FlattenMlp(
hidden_sizes=[net_size, net_size, net_size],
input_size=obs_dim + action_dim + latent_dim,
output_size=1
)
# Setting up tasks
if 'randomize_tasks' in variant.keys() and variant['randomize_tasks']:
train_tasks = np.random.choice(len(tasks), size=variant['n_train_tasks'], replace=False)
elif 'interpolation' in variant.keys() and variant['interpolation']:
step = len(tasks)/variant['n_train_tasks']
train_tasks = np.array([tasks[int(i*step)] for i in range(variant['n_train_tasks'])])
train_buffer = MultiTaskReplayBuffer(variant['algo_params']['replay_buffer_size'], env, train_tasks, 1)
data_dir = variant['algo_params']['data_dir']
offline_data_quality = variant['algo_params']['offline_data_quality']
n_trj = variant['algo_params']['n_trj']
train_trj_paths = []
for i in range(len(train_tasks)):
goal_i_dir = Path(data_dir) / f"goal_idx{i}"
quality_steps = np.array(sorted(list(set([int(trj_path.stem.split('step')[-1]) for trj_path in goal_i_dir.rglob('trj_evalsample*_step*.npy')]))))
low_quality_steps, mid_quality_steps, high_quality_steps = np.array_split(quality_steps, 3)
if offline_data_quality == 'low':
training_date_steps = low_quality_steps
elif offline_data_quality == 'mid':
training_date_steps = mid_quality_steps
elif offline_data_quality == 'expert':
training_date_steps = high_quality_steps[-1:]
else:
training_date_steps = quality_steps
for j in training_date_steps:
for k in range(n_trj):
train_trj_paths += [os.path.join(data_dir, f"goal_idx{i}", f"trj_evalsample{k}_step{j}.npy")]
train_paths = [train_trj_path for train_trj_path in train_trj_paths if
int(train_trj_path.split('/')[-2].split('goal_idx')[-1]) in train_tasks]
train_task_idxs = [int(train_trj_path.split('/')[-2].split('goal_idx')[-1]) for train_trj_path in train_trj_paths if
int(train_trj_path.split('/')[-2].split('goal_idx')[-1]) in train_tasks]
obs_train_lst = []
action_train_lst = []
reward_train_lst = []
next_obs_train_lst = []
terminal_train_lst = []
task_train_lst = []
for train_path, train_task_idx in zip(train_paths, train_task_idxs):
trj_npy = np.load(train_path, allow_pickle=True)
obs, action, reward, next_obs = np.array_split(trj_npy, [obs_dim, obs_dim+action_dim, -obs_dim], axis=-1)
obs_train_lst += list(obs)
action_train_lst += list(action)
reward_train_lst += list(reward)
next_obs_train_lst += list(next_obs)
terminal = [0 for _ in range(trj_npy.shape[0])]
terminal[-1] = 1
terminal_train_lst += terminal
task_train = [train_task_idx for _ in range(trj_npy.shape[0])]
task_train_lst += task_train
# load training buffer
for i, (task_train,
obs,
action,
reward,
next_obs,
terminal,
) in enumerate(zip(
task_train_lst,
obs_train_lst,
action_train_lst,
reward_train_lst,
next_obs_train_lst,
terminal_train_lst,
)):
train_buffer.add_sample(
task_train,
obs,
action,
reward,
terminal,
next_obs,
**{'env_info': {}},
)
# training meta critic
total_epoch = 100
qf1.to(ptu.device)
qf2.to(ptu.device)
vf.to(ptu.device)
discount = variant['algo_params']['discount']
qf_lr = variant['algo_params']['qf_lr']
vf_lr = variant['algo_params']['vf_lr']
qf1_optimizer = torch.optim.Adam(qf1.parameters(), lr=qf_lr)
qf2_optimizer = torch.optim.Adam(qf2.parameters(), lr=qf_lr)
vf_optimizer = torch.optim.Adam(vf.parameters(), lr=vf_lr)
for epoch in range(total_epoch):
for task_idx in train_tasks:
data = train_buffer.get_all_data(task_idx)
obs = ptu.from_numpy(data['observations'])
actions = ptu.from_numpy(data['actions'])
rewards = ptu.from_numpy(data['rewards'])
next_obs = ptu.from_numpy(data['next_observations'])
terminal = ptu.from_numpy(data['terminals'])
task_z = ptu.from_numpy(np.zeros((obs.shape[0], latent_dim)))
q1_pred = qf1(None, None, obs, actions, task_z)
q2_pred = qf2(None, None, obs, actions, task_z)
target_q = torch.min(qf1(None, None, next_obs, actions, task_z), qf2(None, None, next_obs, actions, task_z))
qf1_optimizer.zero_grad()
qf2_optimizer.zero_grad()
q_target = rewards + (1. - terminal) * discount * target_q
qf_loss = torch.mean((q1_pred - q_target) ** 2) + torch.mean((q2_pred - q_target) ** 2)
qf_loss.backward(retain_graph=True)
qf1_optimizer.step()
qf2_optimizer.step()
for task_idx in train_tasks:
data = train_buffer.get_all_data(task_idx)
task_dynamics.set_task_idx(task_idx)
task_dynamics.train(data)
print(f"Task {task_idx} finished training")
save_dir = os.path.join(variant['algo_params']['data_dir'], 'dynamics')
os.makedirs(save_dir, exist_ok=True)
task_dynamics.save(save_dir)
def deep_update_dict(fr, to):
''' update dict of dicts with new values '''
# assume dicts have same keys
for k, v in fr.items():
if type(v) is dict:
deep_update_dict(v, to[k])
else:
to[k] = v
return to
@click.command()
@click.argument('config', default=None)
@click.option('--gpu', default=0)
@click.option('--seed', default=0)
def main(config, gpu, seed):
variant = default_config
if config:
with open(os.path.join(config)) as f:
exp_params = json.load(f)
variant = deep_update_dict(exp_params, variant)
variant['util_params']['gpu_id'] = gpu
experiment(variant, seed=seed)
if __name__ == "__main__":
main()