diff --git a/demos/guru_scripts/docker/tutorial/4.x/VectorSearch.md b/demos/guru_scripts/docker/tutorial/4.x/VectorSearch.md index f8bb447c..7cf38d8b 100644 --- a/demos/guru_scripts/docker/tutorial/4.x/VectorSearch.md +++ b/demos/guru_scripts/docker/tutorial/4.x/VectorSearch.md @@ -99,7 +99,7 @@ result = vectorSearch(VectorAttributes, EmbeddingConstant, K, optionalParam) |`VectorAttributes` |A set of vector attributes we will search, the items should be in format **VertexType.VectorName**. E.g., `{Account.eb1, Phone.eb2}`. |`QueryEmbedding` |The query embedding constant to search the top K most similar vectors. |`K` |The top k cutoff--where K most similar vectors will be returned. -|`optionalParam` |Optional, a map of params, including vertex candidate set, EF-- the exploration factor in HNSW algorithm, and global MapAccum storing top-k (vertex, distance score) pairs. E.g., `{candidate_set: vset1, ef: 20, distance_map: @@distmap}`. +|`optionalParam` | A map of optional params, including vertex candidate set, EF-- the exploration factor in HNSW algorithm, and global MapAccum storing top-k (vertex, distance score) pairs. E.g., `{candidate_set: vset1, ef: 20, distance_map: @@distmap}`. ### Return Will return a vertex set