-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_transcribe.sh
161 lines (130 loc) · 5.3 KB
/
run_transcribe.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
#!/usr/bin/env bash
# Set bash to 'debug' mode, it will exit on :
# -e 'error', -u 'undefined variable', -o ... 'error in pipeline', -x 'print commands',
set -e
set -u
set -o pipefail
# --- tools --- #
# levenshtein distance calculator
lev_exe=tools/ScoreCognateOverlapForStemmedWords.exe
# path to ipa2lv phoneme map .yaml
ipa2lv=tools/ipa2lv_alphabet.yaml
# outdir
out_dir=debug
mkdir -p $out_dir
# parallel data
source_parallel=data/train.notestdev.en # corresponds to the first index in the alignments (source)
target_parallel=data/train.notestdev.lv # corresponds to the second index in the alignments (target)
fwd=data/train.notestdev.en-lv.forward-align # source-target forward alignment
bwd=data/train.notestdev.en-lv.backward-align # source-target backward alignment
# source language identifier
s_lang=en
# target language identifier
t_lang=lv
# idf data
idf=data/en.not_stemmed.idf
stop_words=data/stop-words.en # leave empty if not needed
# lower and upper bounds for IDF filtering
lower=12.5 # 7
upper=0.0
lower_str=${lower/./_}
upper_str=${upper/./_}
# minimum required word similarity as levenshtein distance
min_lev=0.5 # set to 0 to disable
# maximum allowed word similarity as levenshtein distance
max_lev=0.7 # set to 1 to disable
# stages
stage=1
stop_stage=100
# define logger
log() {
# This function is from espnet
# https://github.com/espnet/espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
# ------ Parallel data preparation ------ #
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Filter alignments"
python3 ./extract_alignments.py --forward=$fwd \
--backward=$bwd \
--out=$out_dir
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Filter parallel sentences"
python3 ./add_text_to_alignments.py --alignments=${out_dir}/filtered_alignments.txt \
--source=$source_parallel \
--target=$target_parallel \
--out=$out_dir
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Add dummy POS tags to the filtered alignment-text file for script compatibility"
python3 ./add_tags_to_alignments.py --alignment_text=${out_dir}/aligned_text_raw.txt \
--tags="" \
--dummy \
--out=$out_dir
fi
# ------ Target word preparation ------ #
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Generate list of target words in source language based on frequency"
python3 ./stem_idf_extract_words.py --idf=$idf \
--stop_words=$stop_words \
--lower=$lower \
--upper=$upper \
--out=$out_dir \
--lang=$s_lang
fi
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Extract candidate sentences and source-target word pairs from parallel corpus by matching target words"
python3 ./extract_candidate_word_pairs.py --target=${out_dir}/${s_lang}.lower_${lower_str}_upper_${upper_str} \
--parallel=${out_dir}/aligned_tagged_text_raw.txt \
--out=$out_dir
fi
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
log "Stage 6: Calculate levenshtein distance for stemmed source-target word pairs"
cat ${out_dir}/unique_transl_pairs.txt | cut -d " " -f2,3 >${out_dir}/temp_pairs.txt
sed 's/[[:blank:]]/\t/g' ${out_dir}/temp_pairs.txt >${out_dir}/temp_pairs_2.txt
rm ${out_dir}/temp_pairs.txt
mono $lev_exe $s_lang $t_lang <${out_dir}/temp_pairs_2.txt >${out_dir}/pair_scores.txt
rm ${out_dir}/temp_pairs_2.txt
fi
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
log "Stage 7: Discard too similar source-target pairs"
python3 ./filter_scored_pairs.py --pairs=${out_dir}/unique_transl_pairs.txt \
--scores=${out_dir}/pair_scores.txt \
--threshold $max_lev \
--lang=$s_lang \
--out $out_dir
fi
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
log "Stage 8: Generate transcriptions of target word"
# inherits same input/output format as transliterator for simplicity
python3 ./transcribe_target_words.py --targets=${out_dir}/transl.${s_lang} \
--map=$ipa2lv \
--lang=$t_lang \
--out=$out_dir
# add transliterations to candidate sentence file
python3 ./join_translit_pairs.py --pairs=${out_dir}/unique_transl_pairs_filtered.txt \
--transl=${out_dir}/transl.${t_lang} \
--out=$out_dir
fi
if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then
log "Stage 10: Calculate levenshtein distance for transcribed source-target word pairs"
cat ${out_dir}/unique_transl_pairs_filtered_translated.txt | tr '|' ' ' | cut -d " " -f2,4 | tr ' ' '\t' >${out_dir}/trans.${t_lang}.temp
mono $lev_exe $s_lang $t_lang < ${out_dir}/trans.${t_lang}.temp > ${out_dir}/trans.${t_lang}.scores
#rm ${out_dir}/trans.${t_lang}.temp
fi
if [ $stage -le 11 ] && [ $stop_stage -ge 11 ]; then
log "Stage 11: Discard suboptimal source-target transcriptions based on minimum required levenshtein distance"
python3 ./filter_translit_pairs.py --pairs=${out_dir}/unique_transl_pairs_filtered_translated.txt \
--scores=${out_dir}/trans.${t_lang}.scores \
--threshold $min_lev \
--out $out_dir
fi
if [ $stage -le 12 ] && [ $stop_stage -ge 12 ]; then
log "Stage 12: Substitute transcriptions into candidate sentences"
python3 ./finalise_candidates.py --pairs=${out_dir}/unique_transl_pairs_filtered_translated_clean.txt \
--sent=${out_dir}/candidate_sentences.txt \
--sample_all \
--out $out_dir
fi