forked from hbakhtiyor/schnorr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathschnorr.go
301 lines (254 loc) · 8.1 KB
/
schnorr.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
package schnorr
import (
"crypto/elliptic"
"crypto/rand"
"crypto/sha256"
"errors"
"math/big"
"github.com/btcsuite/btcd/btcec"
)
var (
// Curve is a KoblitzCurve which implements secp256k1.
Curve = btcec.S256()
// One holds a big integer of 1
One = new(big.Int).SetInt64(1)
// Two holds a big integer of 2
Two = new(big.Int).SetInt64(2)
// Three holds a big integer of 3
Three = new(big.Int).SetInt64(3)
// Four holds a big integer of 4
Four = new(big.Int).SetInt64(4)
// Seven holds a big integer of 7
Seven = new(big.Int).SetInt64(7)
// N2 holds a big integer of N-2
N2 = new(big.Int).Sub(Curve.N, Two)
)
// Sign a 32 byte message with the private key, returning a 64 byte signature.
// https://github.com/sipa/bips/blob/bip-schnorr/bip-schnorr.mediawiki#signing
func Sign(privateKey *big.Int, message [32]byte) ([64]byte, error) {
sig := [64]byte{}
if privateKey.Cmp(One) < 0 || privateKey.Cmp(new(big.Int).Sub(Curve.N, One)) > 0 {
return sig, errors.New("the private key must be an integer in the range 1..n-1")
}
d := intToByte(privateKey)
k0, err := deterministicGetK0(d, message)
if err != nil {
return sig, err
}
Rx, Ry := Curve.ScalarBaseMult(intToByte(k0))
k := getK(Ry, k0)
Px, Py := Curve.ScalarBaseMult(d)
rX := intToByte(Rx)
e := getE(Px, Py, rX, message)
e.Mul(e, privateKey)
k.Add(k, e)
k.Mod(k, Curve.N)
copy(sig[:32], rX)
copy(sig[32:], intToByte(k))
return sig, nil
}
// Verify a 64 byte signature of a 32 byte message against the public key.
// Returns an error if verification fails.
// https://github.com/sipa/bips/blob/bip-schnorr/bip-schnorr.mediawiki#verification
func Verify(publicKey [33]byte, message [32]byte, signature [64]byte) (bool, error) {
Px, Py := Unmarshal(Curve, publicKey[:])
if Px == nil || Py == nil || !Curve.IsOnCurve(Px, Py) {
return false, errors.New("signature verification failed")
}
r := new(big.Int).SetBytes(signature[:32])
if r.Cmp(Curve.P) >= 0 {
return false, errors.New("r is larger than or equal to field size")
}
s := new(big.Int).SetBytes(signature[32:])
if s.Cmp(Curve.N) >= 0 {
return false, errors.New("s is larger than or equal to curve order")
}
e := getE(Px, Py, intToByte(r), message)
sGx, sGy := Curve.ScalarBaseMult(intToByte(s))
// e.Sub(Curve.N, e)
ePx, ePy := Curve.ScalarMult(Px, Py, intToByte(e))
ePy.Sub(Curve.P, ePy)
Rx, Ry := Curve.Add(sGx, sGy, ePx, ePy)
if (Rx.Sign() == 0 && Ry.Sign() == 0) || big.Jacobi(Ry, Curve.P) != 1 || Rx.Cmp(r) != 0 {
return false, errors.New("signature verification failed")
}
return true, nil
}
// BatchVerify verifies a list of 64 byte signatures of 32 byte messages against the public keys.
// Returns an error if verification fails.
// https://github.com/sipa/bips/blob/bip-schnorr/bip-schnorr.mediawiki#batch-verification
func BatchVerify(publicKeys [][33]byte, messages [][32]byte, signatures [][64]byte) (bool, error) {
if publicKeys == nil || len(publicKeys) == 0 {
return false, errors.New("publicKeys must be an array with one or more elements")
}
if messages == nil || len(messages) == 0 {
return false, errors.New("messages must be an array with one or more elements")
}
if signatures == nil || len(signatures) == 0 {
return false, errors.New("signatures must be an array with one or more elements")
}
if len(publicKeys) != len(messages) || len(messages) != len(signatures) {
return false, errors.New("all parameters must be an array with the same length")
}
ls := new(big.Int).SetInt64(0)
a := new(big.Int).SetInt64(1)
rsx, rsy := new(big.Int), new(big.Int)
for i, signature := range signatures {
publicKey := publicKeys[i]
message := messages[i]
Px, Py := Unmarshal(Curve, publicKey[:])
if Px == nil || Py == nil || !Curve.IsOnCurve(Px, Py) {
return false, errors.New("signature verification failed")
}
r := new(big.Int).SetBytes(signature[:32])
if r.Cmp(Curve.P) >= 0 {
return false, errors.New("r is larger than or equal to field size")
}
s := new(big.Int).SetBytes(signature[32:])
if s.Cmp(Curve.N) >= 0 {
return false, errors.New("s is larger than or equal to curve order")
}
e := getE(Px, Py, intToByte(r), message)
r2 := new(big.Int).Exp(r, Three, nil)
r2.Add(r2, Seven)
c := r2.Mod(r2, Curve.P)
exp := new(big.Int).Add(Curve.P, One)
exp.Div(exp, Four)
y := new(big.Int).Exp(c, exp, Curve.P)
if new(big.Int).Exp(y, Two, Curve.P).Cmp(c) != 0 {
return false, errors.New("signature verification failed")
}
Rx, Ry := r, y
if i != 0 {
var err error
a, err = deterministicGetRandA()
if err != nil {
return false, err
}
}
aRx, aRy := Curve.ScalarMult(Rx, Ry, intToByte(a))
aePx, aePy := Curve.ScalarMult(Px, Py, e.Mul(e, a).Bytes())
rsx, rsy = Curve.Add(rsx, rsy, aRx, aRy)
rsx, rsy = Curve.Add(rsx, rsy, aePx, aePy)
s.Mul(s, a)
ls.Add(ls, s)
}
Gx, Gy := Curve.ScalarBaseMult(intToByte(ls.Mod(ls, Curve.N)))
if Gx.Cmp(rsx) != 0 || Gy.Cmp(rsy) != 0 {
return false, errors.New("signature verification failed")
}
return true, nil
}
// AggregateSignatures aggregates multiple signatures of different private keys over
// the same message into a single 64 byte signature.
func AggregateSignatures(privateKeys []*big.Int, message [32]byte) ([64]byte, error) {
sig := [64]byte{}
if privateKeys == nil || len(privateKeys) == 0 {
return sig, errors.New("privateKeys must be an array with one or more elements")
}
k0s := []*big.Int{}
Px, Py := new(big.Int), new(big.Int)
Rx, Ry := new(big.Int), new(big.Int)
for _, privateKey := range privateKeys {
if privateKey.Cmp(One) < 0 || privateKey.Cmp(new(big.Int).Sub(Curve.N, One)) > 0 {
return sig, errors.New("the private key must be an integer in the range 1..n-1")
}
d := intToByte(privateKey)
k0i, err := deterministicGetK0(d, message)
if err != nil {
return sig, err
}
RiX, RiY := Curve.ScalarBaseMult(intToByte(k0i))
PiX, PiY := Curve.ScalarBaseMult(d)
k0s = append(k0s, k0i)
Rx, Ry = Curve.Add(Rx, Ry, RiX, RiY)
Px, Py = Curve.Add(Px, Py, PiX, PiY)
}
rX := intToByte(Rx)
e := getE(Px, Py, rX, message)
s := new(big.Int).SetInt64(0)
for i, k0 := range k0s {
k := getK(Ry, k0)
k.Add(k, new(big.Int).Mul(e, privateKeys[i]))
s.Add(s, k)
}
copy(sig[:32], rX)
copy(sig[32:], intToByte(s.Mod(s, Curve.N)))
return sig, nil
}
func getE(Px, Py *big.Int, rX []byte, m [32]byte) *big.Int {
r := append(rX, Marshal(Curve, Px, Py)...)
r = append(r, m[:]...)
h := sha256.Sum256(r)
i := new(big.Int).SetBytes(h[:])
return i.Mod(i, Curve.N)
}
func getK(Ry, k0 *big.Int) *big.Int {
if big.Jacobi(Ry, Curve.P) == 1 {
return k0
}
return k0.Sub(Curve.N, k0)
}
func deterministicGetK0(d []byte, message [32]byte) (*big.Int, error) {
h := sha256.Sum256(append(d, message[:]...))
i := new(big.Int).SetBytes(h[:])
k0 := i.Mod(i, Curve.N)
if k0.Sign() == 0 {
return nil, errors.New("k0 is zero")
}
return k0, nil
}
func deterministicGetRandA() (*big.Int, error) {
a, err := rand.Int(rand.Reader, N2)
if err != nil {
return nil, err
}
return a.Add(a, One), nil
}
func intToByte(i *big.Int) []byte {
b1, b2 := [32]byte{}, i.Bytes()
copy(b1[32-len(b2):], b2)
return b1[:]
}
// Marshal converts a point into the form specified in section 2.3.3 of the
// SEC 1 standard.
func Marshal(curve elliptic.Curve, x, y *big.Int) []byte {
byteLen := (curve.Params().BitSize + 7) >> 3
ret := make([]byte, 1+byteLen)
ret[0] = 2 // compressed point
xBytes := x.Bytes()
copy(ret[1+byteLen-len(xBytes):], xBytes)
ret[0] += byte(y.Bit(0))
return ret
}
// Unmarshal converts a point, serialised by Marshal, into an x, y pair. On
// error, x = nil.
func Unmarshal(curve elliptic.Curve, data []byte) (x, y *big.Int) {
byteLen := (curve.Params().BitSize + 7) >> 3
if (data[0] &^ 1) != 2 {
return
}
if len(data) != 1+byteLen {
return
}
x0 := new(big.Int).SetBytes(data[1 : 1+byteLen])
P := curve.Params().P
ySq := new(big.Int)
ySq.Exp(x0, Three, P)
ySq.Add(ySq, Seven)
ySq.Mod(ySq, P)
y0 := new(big.Int)
P1 := new(big.Int).Add(P, One)
d := new(big.Int).Mod(P1, Four)
P1.Sub(P1, d)
P1.Div(P1, Four)
y0.Exp(ySq, P1, P)
if new(big.Int).Exp(y0, Two, P).Cmp(ySq) != 0 {
return
}
if y0.Bit(0) != uint(data[0]&1) {
y0.Sub(P, y0)
}
x, y = x0, y0
return
}