-
Notifications
You must be signed in to change notification settings - Fork 223
/
Copy pathextract_nasnet_large_features.py
76 lines (55 loc) · 2.15 KB
/
extract_nasnet_large_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import tensorflow as tf
from keras import backend as K
from utils.nasnet import NASNetLarge
from utils.data_loader import train_generator, val_generator
sess = tf.Session()
K.set_session(sess)
image_size = 224
def _float32_feature_list(floats):
return tf.train.Feature(float_list=tf.train.FloatList(value=floats))
model = NASNetLarge((image_size, image_size, 3), include_top=False, pooling='avg')
model.summary()
# ''' TRAIN SET '''
nb_samples = 250000 * 2
batchsize = 200
with sess.as_default():
generator = train_generator(batchsize, shuffle=False)
writer = tf.python_io.TFRecordWriter('weights/nasnet_large_train.tfrecord')
count = 0
for _ in range(nb_samples // batchsize):
x_batch, y_batch = next(generator)
with sess.as_default():
x_batch = model.predict(x_batch, batchsize, verbose=1)
for i, (x, y) in enumerate(zip(x_batch, y_batch)):
examples = {
'features': _float32_feature_list(x.flatten()),
'scores': _float32_feature_list(y.flatten()),
}
features = tf.train.Features(feature=examples)
example = tf.train.Example(features=features)
writer.write(example.SerializeToString())
count += batchsize
print("Finished %0.2f percentage storing dataset" % (count * 100 / float(nb_samples)))
writer.close()
''' TRAIN SET '''
nb_samples = 5000
batchsize = 200
with sess.as_default():
generator = val_generator(batchsize)
writer = tf.python_io.TFRecordWriter('weights/nasnet_large_val.tfrecord')
count = 0
for _ in range(nb_samples // batchsize):
x_batch, y_batch = next(generator)
with sess.as_default():
x_batch = model.predict(x_batch, batchsize, verbose=1)
for i, (x, y) in enumerate(zip(x_batch, y_batch)):
examples = {
'features': _float32_feature_list(x.flatten()),
'scores': _float32_feature_list(y.flatten()),
}
features = tf.train.Features(feature=examples)
example = tf.train.Example(features=features)
writer.write(example.SerializeToString())
count += batchsize
print("Finished %0.2f percentage storing dataset" % (count * 100 / float(nb_samples)))
writer.close()