-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnnModelST_pytorch.py
59 lines (54 loc) · 1.74 KB
/
nnModelST_pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import torch
from torch import nn
from torch.nn import functional as F
from gcnModelST_pytorch import GCN_layer
import torch
from gcnModelST_pytorch import GCN_layer
from GCN_attention import attention
class cnn(nn.Module):
def __init__(self):
super(cnn, self).__init__()
self.layer1 = nn.Sequential(
nn.Conv2d(60, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)),
nn.BatchNorm2d(64),
nn.ELU(inplace=True),
nn.Dropout(0.25),
nn.BatchNorm2d(64)
)
self.layer2 = nn.Sequential(
nn.Conv2d(64, 64, kernel_size=(4, 4), stride=(4, 4)),
nn.BatchNorm2d(64),
nn.ELU(inplace=True),
nn.Dropout(0.25),
nn.BatchNorm2d(64)
)
# self.layer3 = nn.Sequential(
# nn.Linear(1024, 1024),
# nn.BatchNorm1d(1024),
# nn.ELU(inplace=True),
# nn.Dropout(0.25),
# )
self.layer3 = nn.Sequential(
nn.Conv2d(64, 64, kernel_size=(4, 4), stride=(4, 4)),
nn.BatchNorm2d(64),
nn.ELU(inplace=True),
nn.Dropout(0.25),
nn.BatchNorm2d(64)
)
self.layer4 = nn.Sequential(
nn.Linear(4 * 64, 64),
# nn.BatchNorm1d(64),
nn.ELU(inplace=True),
nn.Dropout(0.25),
nn.Linear(64, 2),
nn.Softmax(dim=1)
)
def forward(self, img):
x1 = self.layer1(img)
x2 = self.layer2(x1)
xb = self.layer3(x2)
# print(xb.shape)
x3 = xb.contiguous().view(-1, 4*64)
x4 = self.layer4(x3)
#4x = self.layer4(x)
return x4