-
Notifications
You must be signed in to change notification settings - Fork 10
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Can't use ThreadsX.map
as a direct drop-in due to lack of GPU support.
#197
Comments
I was going to suggest using julia> using Folds, CUDA, FoldsCUDA
julia> Folds.map(x -> x + 1, cu([1,2,3]), CUDAEx())
ERROR: FoldsCUDA.FailedInference: Kernel is inferred to return invalid type: BangBang.SafeCollector{Vector{Int64}}
HINT: if this exception is caught as `err``, use `CUDA.code_typed(err)` to introspect the erronous code.
Stacktrace:
[1] _infer_acctype(rf::Function, init::BangBang.SafeCollector{BangBang.NoBang.Empty{Vector{Union{}}}}, arrays::Tuple{CuArray{Int64, 1, CUDA.Mem.DeviceBuffer}}, include_init::Bool)
@ FoldsCUDA ~/.julia/packages/FoldsCUDA/Mo35m/src/kernels.jl:112
[2] _infer_acctype
@ ~/.julia/packages/FoldsCUDA/Mo35m/src/kernels.jl:97 [inlined]
[3] _transduce!(buf::Nothing, rf::Transducers.Reduction{Transducers.Map{typeof(first)}, Transducers.Reduction{Transducers.Map{var"#21#22"}, Transducers.Reduction{Transducers.Map{Type{BangBang.NoBang.SingletonVector}}, Transducers.BottomRF{Transducers.AdHocRF{typeof(BangBang.collector), typeof(identity), typeof(BangBang.append!!), typeof(identity), typeof(identity), Nothing}}}}}, init::BangBang.SafeCollector{BangBang.NoBang.Empty{Vector{Union{}}}}, arrays::CuArray{Int64, 1, CUDA.Mem.DeviceBuffer})
@ FoldsCUDA ~/.julia/packages/FoldsCUDA/Mo35m/src/kernels.jl:128
[4] transduce_impl(rf::Transducers.Reduction{Transducers.Map{typeof(first)}, Transducers.Reduction{Transducers.Map{var"#21#22"}, Transducers.Reduction{Transducers.Map{Type{BangBang.NoBang.SingletonVector}}, Transducers.BottomRF{Transducers.AdHocRF{typeof(BangBang.collector), typeof(identity), typeof(BangBang.append!!), typeof(identity), typeof(identity), Nothing}}}}}, init::BangBang.SafeCollector{BangBang.NoBang.Empty{Vector{Union{}}}}, arrays::CuArray{Int64, 1, CUDA.Mem.DeviceBuffer})
@ FoldsCUDA ~/.julia/packages/FoldsCUDA/Mo35m/src/kernels.jl:32
[5] _transduce_cuda(op::Function, init::BangBang.SafeCollector{BangBang.NoBang.Empty{Vector{Union{}}}}, xs::Transducers.Eduction{Transducers.Reduction{Transducers.Map{var"#21#22"}, Transducers.BottomRF{Transducers.Completing{typeof(BangBang.push!!)}}}, CuArray{Int64, 1, CUDA.Mem.DeviceBuffer}})
@ FoldsCUDA ~/.julia/packages/FoldsCUDA/Mo35m/src/kernels.jl:18
[6] #_transduce_cuda#5
@ ~/.julia/packages/FoldsCUDA/Mo35m/src/kernels.jl:1 [inlined]
[7] _transduce_cuda
@ ~/.julia/packages/FoldsCUDA/Mo35m/src/kernels.jl:1 [inlined]
[8] transduce
@ ~/.julia/packages/FoldsCUDA/Mo35m/src/api.jl:45 [inlined]
[9] collect(itr::Transducers.Eduction{Transducers.Reduction{Transducers.Map{var"#21#22"}, Transducers.BottomRF{Transducers.Completing{typeof(BangBang.push!!)}}}, CuArray{Int64, 1, CUDA.Mem.DeviceBuffer}}, ex::CUDAEx{NamedTuple{(), Tuple{}}})
@ Folds.Implementations ~/.julia/packages/Folds/ZayPF/src/collect.jl:4
[10] map(f::Function, itr::CuArray{Int64, 1, CUDA.Mem.DeviceBuffer}, ex::CUDAEx{NamedTuple{(), Tuple{}}})
@ Folds.Implementations ~/.julia/packages/Folds/ZayPF/src/collect.jl:84
[11] top-level scope
@ REPL[14]:1
[12] top-level scope
@ ~/.julia/packages/CUDA/BbliS/src/initialization.jl:52 The intention at least of Folds.jl is to combine distributed, multithreaded, and GPU parallelism under one roof. |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
I find myself writing:
a lot these days :)
The text was updated successfully, but these errors were encountered: