-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path1.5-scheme_ds.tex
1317 lines (1182 loc) · 42.6 KB
/
1.5-scheme_ds.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[alsotrans,beameroptions={aspectratio=169}]{beamerswitch}
\usepackage{fprog}
%% кои теми да се включат
% матрици
\newboolfalse{matrices}
% капсулация чрез функционални обекти
\newbooltrue{encapsulation}
% алтернативна реализация на add-assoc
\newboolfalse{altaddassoc}
% дълбоки списъци
\newbooltrue{deeplists}
% графи
\newboolfalse{graphs}
% допълнителни съкратени команди за дълбоките списъци
\newcommand{\hzero}{\textcolor{red}}
\newcommand{\vzero}{\textcolor{orange}}
\newcommand{\hstep}{\textcolor{green}}
\newcommand{\vstep}{\textcolor{cyan}}
\title{Структури от данни в Scheme}
\subtitle{\ifbool{matrices}{матрици, }асоциативни списъци, дървета\ifbool{deeplists}{, дълбоки списъци}{}\ifbool{graphs}{, графи}{}}
\date[25.10–6.11.2024 г.]{25 октомври – 6 ноември 2024 г.}
\lstset{language=Scheme}
\newcommand{\samplegraph}[1][1.2]{%
\begin{tikzpicture}
[>=stealth,
every node/.style=graphnode,
scale=#1]
\node (1) at (1,2) {1};
\node (2) at (3,2.2) {2};
\node (3) at (1.9,1.2) {3};
\node (4) at (0.8,0.3) {4};
\node (5) at (2.5,0) {5};
\node (6) at (3.5,1.2) {6};
\graph {
(1) -> {(2), (3)};
(2) -> (3);
(3) -> {(4), (5)};
(5) -> {(2), (4) ,(6)};
(6) -> (2);
};
\end{tikzpicture}}
% изисквания към графа:
% да не е силно свързан (т.е. да има недостижим връх)
%% 1
% да има път, който се намира само след backtracking
%% 1 -> 2 -> 3 -> 4 <- 3 -> 5
% да има път, който минава през цикъл при първо минаване и пътят се намира едва след backtracking
%% 1 -> 2 -> 3 -> 5 -> 2 -> ... <- 5 -> 6
% да има път, който минава през цикъл, но в цикъла се влиза чак след backtracking, при първо минаване се намира пътя
%% 1 -> 2 -> 3 -> 4 <- 3 -> 5 -> 2 -> ...
\begin{document}
\begin{frame}
\titlepage
\end{frame}
\section{Матрици}
\subsection{Представяне}
\begin{frame}<\switch{matrices}>[fragile]
\frametitle{Представяне на матрици}
Можем да представим матрица като списък от списък от елементи:\\
\begin{columns}[T,onlytextwidth]
\begin{column}{0.5\textwidth}
\begin{equation*}
\left(
\begin{array}{ccc}
1 & 2 & 3\\
4 & 5 & 6
\end{array}
\right)
\end{equation*}
\end{column}
\begin{column}{0.5\textwidth}
\vspace{2ex}
\tt{((1 2 3) (4 5 6))}
\end{column}
\end{columns}
\vspace{2ex}
\pause
Проверка за коректност:
\pause
\begin{lstlisting}
(define (all? p? l)
(foldr (lambda (x y) (and x y)) #t (map p? l)))
(define (matrix? m)
(and (list? m)
(not (null? (car m)))
(all? list? m)
(all? (lambda (row) (= (length row)
(length (car m)))) m)))
\end{lstlisting}
\end{frame}
\subsection{Операции}
\begin{frame}<\switch{matrices}>[fragile]
\frametitle{Базови операции}
Брой редове и стълбове
\pause
\onslide<+->
\begin{lstlisting}
(define @\alt<+->{get-rows length)}{(get-rows m) (length m))}@
(define (get-columns m) (length (car m)))
\end{lstlisting}
\onslide<+->
Намиране на първи ред и стълб
\onslide<+->
\begin{lstlisting}
(define @\alt<+->{get-first-row car)}{(get-first-row m) (car m))}@
(define (get-first-column m) (map car m))
\end{lstlisting}
\onslide<+->
Изтриване на първи ред и стълб
\onslide<+->
\begin{lstlisting}
(define @\alt<+->{del-first-row cdr)}{(del-first-row m) (cdr m))}@
(define (del-first-column m) (map cdr m))
\end{lstlisting}
\end{frame}
\begin{frame}<\switch{matrices}>[fragile]
\frametitle{Разширени операции}
Намиране на ред и стълб по индекс
\pause
\onslide<+->
\begin{lstlisting}
(define @\alt<+->{get-row list-ref)}{(get-row m i) (list-ref m i))}@
(define (get-column m i)
(map (lambda (row) (list-ref row i)) m))
\end{lstlisting}
\pause
Транспониране\\
\pause
\onslide<+->
\textbf{Вариант 1 (директна рекурсия):}
\begin{lstlisting}
(define (transpose m)
(if (null? (get-first-row m)) '()
(cons (get-first-column m)
(transpose (del-first-column m)))))
\end{lstlisting}
\onslide<+->
\textbf{Вариант 2 (\tt{accumulate}):}
\begin{overprint}
\begin{lstlisting}
(define (transpose m)
(accumulate @\rvl{cons} \rvl{'()} \rvl0 \rvl{(- (get-columns m) 1)}@ @\rvl{(lambda (i) (get-column m i))} \rvl{1+}@))
\end{lstlisting}
\end{overprint}
\end{frame}
\begin{frame}<\switch{matrices}>[fragile]
\frametitle{Аритметични операции}
Събиране на матрици
\pause
\begin{lstlisting}
(define (+vectors v1 v2) (map + v1 v2))
(define (+matrices m1 m2) (map +vectors m1 m2))
\end{lstlisting}
\pause
\vspace{2ex}
Умножение на матрици \pause
($c_{i,j} = \vec a_i\cdot \vec b^T_j = \sum_{k=0}^n A_{i,k}B_{k,j}$)
\pause
\small
\begin{lstlisting}
(define (*vectors v1 v2) (apply + (map * v1 v2)))@\pause@
(define (*matrices m1 m2)
(let ((m2t (transpose m2)))
(map (lambda (row)
(map (lambda (column) (*vectors row column))
m2t))
m1)))
\end{lstlisting}
\end{frame}
\section{Абстракция със структури от данни}
\subsection{Нива на абстракция}
\begin{frame}[<+->]
\frametitle{Абстракция със структури от данни}
\begin{definition}[Абстракция]
Принцип за разделянето („абстрахирането“) на \emph{представянето} на дадена структура от данни (СД) от нейното \emph{използване}.
\end{definition}
\begin{itemize}
\item основен принцип на обектно-ориентираното програмиране
\item позволява използването на СД преди представянето ѝ да е уточнено
\item предимства:
\begin{itemize}
\item програмите работят на по-високо концептуално ниво със СД
\item позволява алтернативни имплементации на дадена СД, подходящи за различни видове задачи
\item влиянието на промени по представянето е ограничено до операциите, които „знаят“ за него
\item подобрения при представянето автоматично се разпространяват до по-горните нива на абстракция
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}[<+->]
\frametitle{Пример: рационално число}
\begin{itemize}
\item Логическо описание: обикновена дроб
\item Физическо представяне: наредена двойка от цели числа
\item Базови операции:
\begin{itemize}[<.->]
\item конструиране на рационално число
\item получаване на числител
\item получаване на знаменател
\end{itemize}
\item Аритметични операции:
\begin{itemize}[<.->]
\item събиране, изваждане
\item умножение, деление
\item сравнение
\end{itemize}
\item Приложни програми
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Нива на абстракция}
\begin{center}
\begin{tikzpicture}
\graph[nodes={
draw,
minimum width=24em,
minimum height=5ex,
align=center},
edges={thick,>=stealth},
grow up sep=4ex] {
a[as={физическо представяне\\(наредена двойка от цели числа)}] ->
b[as={базови операции\\(конструктор, селектори за числител и знаменател)}] ->
c[as={аритметични операции\\(\tt{+}, \tt{-}, \tt{*}, \tt{/}, \tt{=}, \tt{<}, \tt{>}, \tt{<=}, \tt{>=})}] ->
d[as={приложни програми}]
};
\end{tikzpicture}
\end{center}
\end{frame}
\subsection{Абстракция с наредени двойки}
\begin{frame}[fragile]
\frametitle{Рационални числа}
Физическо представяне\\[2ex]
\begin{center}
\small
\begin{tikzpicture}
\pointcellxx[nodes={minimum width=8em}] a{\text{числител}}{\text{знаменател}}
\end{tikzpicture}
\end{center}
\pause
Базови операции
\begin{itemize}[<+->]
\item \alt<+->{\lst{(define make-rat cons)}}{\lst{(define (make-rat n d) (cons n d))}}
\item \alt<+->{\lst{(define get-numer car)}}{\lst{(define (get-numer r) (car r))}}
\item \alt<+->{\lst{(define get-denom cdr)}}{\lst{(define (get-denom r) (cdr r))}}
\end{itemize}
\onslide<+->
\vspace{2ex}
По-добре:
\begin{lstlisting}
(define (make-rat n d)
(if (= d 0) (cons n 1) (cons n d)))
\end{lstlisting}
\end{frame}
\begin{frame}<1-3>[label=ratarith,fragile]
\frametitle{Аритметични операции}
\sizeboth\footnotesize
\begin{columns}[T,onlytextwidth]
\begin{column}{0.34\textwidth}
\vspace{4ex}
\begin{equation*}
\frac{n_1}{d_1}\frac{n_2}{d_2} = \frac{n_1n_2}{d_1d_2}
\end{equation*}
\vspace{8ex}
\begin{uncoverenv}<2->
\begin{equation*}
\frac{n_1}{d_1} + \frac{n_2}{d_2} = \frac{n_1d_2 + n_2d_1}{d_1d_2}
\end{equation*}
\end{uncoverenv}
\vspace{8ex}
\begin{uncoverenv}<3->
\begin{equation*}
\frac{n_1}{d_1} < \frac{n_2}{d_2} \alt<3>{\leftrightarrow}{\alert{\nleftrightarrow}} n_1d_2 < n_2d_1
\end{equation*}
\end{uncoverenv}
\end{column}
\begin{column}{0.66\textwidth}
\begin{lstlisting}
(define (*rat p q)
(make-rat
(* (get-numer p) (get-numer q))
(* (get-denom p) (get-denom q))))
\end{lstlisting}
\begin{uncoverenv}<2->
\begin{lstlisting}
(define (+rat p q)
(make-rat
(+ (* (get-numer p)
(get-denom q))
(* (get-denom p)
(get-numer q)))
(* (get-denom p) (get-denom q))))
\end{lstlisting}
\end{uncoverenv}
\begin{uncoverenv}<3->
\begin{lstlisting}
(define (<rat p q)
(< (* (get-numer p) (get-denom q))
(* (get-numer q) (get-denom p))))
\end{lstlisting}
\end{uncoverenv}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[label=ratprog,fragile]
\frametitle{Програми с рационални числа}
\begin{equation*}
\sum_{i=0}^n \frac{x^i}{i!}
\end{equation*}
\onslide<+->
\begin{overprint}
\begin{semiverbatim}
(define (my-exp x n)
(accumulate
\rvl{+rat} \rvl{(make-rat 0 1)} 0 n
\rvl{(lambda (i) (make-rat (pow x i) (fact i)))} 1+))
\end{semiverbatim}
\end{overprint}
\end{frame}
\begin{frame}<1-2>[label=ratnorm,fragile]
\frametitle{Нормализация}
\textbf{Проблем:} Числителят и знаменателят стават много големи!\\[2ex]
\pause
\textbf{Проблем:} \evalsto{(<rat (make-rat 1 2) (make-rat 1 -2))}{\#t}\\[2ex]
\pause
\textbf{Идея:} Да работим с \emph{нормализирани} дроби $\frac p q$, където $p \in \mathbb Z, q \in \mathbb N^+$ и $gcd(p,q) = 1$.
\pause
\begin{lstlisting}
(define (make-rat n d)
(if (or (= d 0) (= n 0)) (cons 0 1)
(let* ((g (gcd n d))
(ng (quotient n g))
(dg (quotient d g)))
(if (> dg 0) (cons ng dg)
(cons (- ng) (- dg))))))
\end{lstlisting}
\pause
\alert{Не е нужно да правим каквито и да е други промени!}
\end{frame}
\againframe<4>{ratarith}
\againframe<3->{ratnorm}
\subsection{Абстракция със сигнатура}
\begin{frame}[fragile]
\frametitle{Сигнатура}
\sizeboth\footnotesize
\textbf{Проблем:} Не можем да различим СД с еднакви представяния! (рационално число, комплексно число, точка в равнината)\\
\pause
\textbf{Идея:} Да добавим „етикет“ на обекта
\begin{center}
\begin{tikzpicture}
\pointcellx a{\texttt{rat}}
\nextcellxx[nodes={minimum width=8em}] b{\text{числител}}{\text{знаменател}}a
\end{tikzpicture}
\end{center}
\pause
\vspace{-.5ex}
\begin{lstlisting}
(define (make-rat n d)
@\alert{(cons 'rat}@
(if (or (= d 0) (= n 0)) (cons 0 1)
(let* ((g (gcd n d))
(ng (quotient n g))
(dg (quotient d g)))
(if (> dg 0) (cons ng dg)
(cons (- ng) (- dg)))))))
(define get-numer @\alert{cadr}@)
(define get-denom @\alert{cddr}@)
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Проверка за коректност}
Вече можем да проверим дали даден обект е рационално число:
\begin{lstlisting}
(define (rat? p)
(and (pair? p) (eqv? (car p) 'rat)
(pair? (cdr p))
(integer? (cadr p)) (positive? (cddr p))
(= (gcd (cadr p) (cddr p)) 1)))
\end{lstlisting}
\pause
Можем да добавим проверка за коректност:
\begin{lstlisting}
(define (check-rat f)
(lambda (p)
(if (rat? p) (f p) 'error)))
(define get-numer (check-rat cadr))
(define get-denom (check-rat cddr))
\end{lstlisting}
\end{frame}
\subsection{Капсулация}
\begin{frame}<\switch{encapsulation}>[fragile]
\frametitle{Капсулация на базови операции}
\textbf{Проблем:} операциите над СД са видими глобално\\[2ex]
\pause
\textbf{Идея:} да ги направим „private“
\pause
\begin{lstlisting}
(define (make-rat n d)
(lambda (prop)
(case prop
('get-numer n)
('get-denom d)
('print (cons n d))
(else 'unknown-prop))))
\end{lstlisting}
\pause
\begin{itemize}
\item \lst{(define r (make-rat 3 5))}
\item \evalsto{(r 'get-numer)}3
\item \evalsto{(r 'get-denom)}5
\item \evalsto{(r 'print)}{(3 . 5)}
\end{itemize}
\end{frame}
\begin{frame}<\switch{encapsulation}>[fragile]
\frametitle{Нормализация при капсулация}
\sizeboth\small
\begin{lstlisting}
(define (make-rat n d)
@\alert{(let* ((d (if (= 0 d) 1 d))}@
@\alert{(sign (if (> 0 d) 1 -1))}@
@\alert{(g (gcd n d))}@
@\alert{(numer (* sign (quotient n g)))}@
@\alert{(denom (* sign (quotient d g))))}@
(lambda (prop)
(case prop
('get-numer numer)
('get-denom denom)
('print (cons numer denom))
(else 'unknown-prop))))
\end{lstlisting}
\pause
\begin{itemize}
\item \lst{(define r (make-rat 4 6))}
\item \evalsto{(r 'print)}{(2 . 3)}
\end{itemize}
\end{frame}
\begin{frame}<\switch{encapsulation}>[fragile]
\frametitle{Капсулация на операции с аргументи}
\sizeboth\footnotesize
\begin{lstlisting}
(define (make-rat n d)
(let* ((g (gcd n d))
(d (if (= 0 d) 1 d))
(sign (if (> 0 d) 1 -1))
(numer (* sign (quotient n g)))
(denom (* sign (quotient d g))))
(lambda (prop . params)
(case prop
('get-numer numer)
('get-denom denom)
('print (cons numer denom))
@\alert{('* (let ((r (car params))) (make-rat (* numer (r 'get-numer))}@
@\alert{(* denom (r 'get-denom)))))}@
(else 'unknown-prop))))
\end{lstlisting}
\vspace*{-.5ex}
\pause
\begin{itemize}
\item \lst{(define r1 (make-rat 3 5))}
\item \lst{(define r2 (make-rat 5 2))}
\item \evalsto{((r1 '* r2) 'print)}{(3 . 2)}
\end{itemize}
\end{frame}
\begin{frame}<\switch{encapsulation}>[fragile]
\frametitle{Извикване на собствени операции}
\sizeboth\footnotesize
\begin{lstlisting}
(define (make-rat n d)
(let* ((g (gcd n d))
(d (if (= 0 d) 1 d))
(sign (if (> 0 d) 1 -1))
(numer (* sign (quotient n g)))
(denom (* sign (quotient d g))))
@\alert{(define (self prop . params)}@
(case prop
('get-numer numer)
('get-denom denom)
('print (cons numer denom))
('* (let ((r (car params)))
(make-rat (* @\alert{(self 'get-numer)}@ (r 'get-numer))
(* @\alert{(self 'get-denom)}@ (r 'get-denom)))))
(else 'unknown-prop)))
@\alert{self}@))
\end{lstlisting}
\pause
Извикването на метод на обект чрез препратка \tt{self} или \tt{this} се нарича \alert{отворена рекурсия}.
\end{frame}
\section{Асоциативни списъци}
\subsection{Дефиниция}
\begin{frame}
\frametitle{Асоциативни списъци}
\begin{definition}
Асоциативните списъци (още: речник, хеш, map) са списъци от наредени двойки \tt(<ключ> \tt. <стойност>\tt). <ключ> и <стойност> може да са произволни S-изрази.
\end{definition}
\vspace{2ex}
\tt{((}$K_1$ \tt. $V_1$\tt) \tt($K_1$ \tt. $V_2$\tt) \ldots \tt($K_n$ \tt. $V_n$\tt{))}\\[2ex]
\begin{tikzpicture}
\pointcell{a1}
\nextcell{a2}{a1}
\nextdots{a2}
\dotsnextcell{an}
\nullptr{annext}
\pointcellxx[below=2ex of a1]{kv1}{K_1}{V_1}
\draw[ptr] (a1data) to (kv1data);
\pointcellxx[below=2ex of a2]{kv2}{K_2}{V_2}
\draw[ptr] (a2data) to (kv2data);
\pointcellxx[below=2ex of an]{kvn}{K_n}{V_n}
\draw[ptr] (andata) to (kvndata);
\end{tikzpicture}
\end{frame}
\begin{frame}[fragile]
\frametitle{Примери за асоциативни списъци}
\begin{itemize}[<+->]
\item \tt{((1 . 2) (2 . 3) (3 . 4))}
\item \tt{((a . 10) (b . 12) (c . 18))}
\item \tt{((l1 1 8) (l2 10 1 2) (l3))}
\item \tt{((al1 (1 . 2) (2 . 3)) (al2 (b)) (al3 (a . b) (c . d)))}
\end{itemize}
\vspace{2ex}
\onslide<+->
\textbf{Пример:}
Създаване на асоциативен списък по списък от ключове и функция:
\begin{lstlisting}
(define (make-alist f keys)
(map (lambda (x) (cons x (f x))) keys))
\end{lstlisting}
\onslide<+->
\evalsto{(make-alist square '(1 3 5))}{((1 . 1) (3 . 9) (5 . 25))}
\end{frame}
\subsection{Операции}
\begin{frame}[fragile]
\frametitle{Селектори за асоциативни списъци}
\begin{itemize}[<+->]
\item \lst{(define (keys alist) (map car alist))}
\item \lst{(define (values alist) (map cdr alist))}
\item \tta{(assoc} <ключ> <асоциативен-списък>\tta)
\begin{itemize}[<.->]
\item Ако <ключ> се среща сред ключовете на <асоциативен-списък>,
връща първата двойка \tt(<ключ> \tt. <стойност>\tt)
\item Ако <ключ> не се среща сред ключовете, връща \tt{\#f}
\item Сравнението се извършва с \tt{equal?}
\end{itemize}
\item \tta{(assv} <ключ> <асоциативен-списък>\tta)
\begin{itemize}[<.->]
\item също като \tt{assoc}, но сравнява с \tt{eqv?}
\end{itemize}
\item \tta{(assq} <ключ> <асоциативен-списък>\tta)
\begin{itemize}[<.->]
\item също като \tt{assoc}, но сравнява с \tt{eq?}
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{Трансформации над асоциативни списъци}
\begin{itemize}[<+->]
\item Изтриване на ключ и съответната му стойност (ако съществува):\\
\onslide<+->
\begin{lstlisting}
(define (del-assoc key alist)
(filter (lambda (kv) (not (equal? (car kv) key))) alist))
\end{lstlisting}
\item Задаване на стойност за ключ (изтривайки старата, ако има такава):\\
\onslide<+->
\begin{lstlisting}
(define (add-assoc key value alist)
(cons (cons key value) (del-assoc key alist)))
\end{lstlisting}
\ifbool{altaddassoc}{
\begin{itemize}
\item А ако искаме да запазим реда на ключовете?
\end{itemize}}{}
\end{itemize}
\end{frame}
\begin{frame}<\switch{altaddassoc}>[fragile]
\frametitle{Задаване на стойност за ключ}
\small
\textbf{Вариант №1 (грозен и по-бърз):}
\begin{lstlisting}
(define (add-assoc key value alist)
(let ((new-kv (cons key value)))
(cond ((null? alist) (list new-kv))
((eqv? (caar alist) key) (cons new-kv (cdr alist)))
(else (cons (car alist)
(add-assoc key value (cdr alist))))))
\end{lstlisting}
\pause
\textbf{Вариант №2 (красив и по-бавен):}
\begin{lstlisting}
(define (add-assoc key value alist)
(let ((new-kv (cons key value)))
(if (assv key alist)
(map (lambda (kv) (if (eq? (car kv) key)
new-kv kv)) alist)
(cons new-kv alist))))
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Задачи за съществуване}
\textbf{Задача.} Да се намери има ли елемент на l, който удовлетворява p.\\
\pause
\textbf{Формула:} $\exists x\in l: p(x)$\\
\pause
\textbf{Решение:}
\begin{lstlisting}
(define (search p l)
(and (not (null? l))
(or (p (car l)) (search p (cdr l)))))
\end{lstlisting}
\pause
\alert{Важно свойство:} Ако \tt p връща „свидетел“ на истинността на свойството $p$ (както например \tt{memv} или \tt{assv}), то \tt{search} също връща този „свидетел“.\\
\pause
\textbf{Пример:}
\begin{lstlisting}
(define (assv key al)
(search (lambda (kv) (and (eqv? (car kv) key) kv)) al))
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Задачи за всяко}
\textbf{Задача.} Всеки елемент на l да се трансформира по дадено правило f.\\
\pause
\textbf{Формула:} $\{f(x)\,|\,x \in l \}$\\
\pause
\textbf{Решение:} \lst{(map f l)}\\[2ex]
\pause
\textbf{Задача.} Да се изберат тези елементи от l, които удовлетворяват p.\\
\pause
\textbf{Формула:} $\{x\,|\,x \in l \wedge p(x) \}$\\
\pause
\textbf{Решение:} \lst{(filter p l)}\\[2ex]
\pause
\textbf{Задача.} Да се провери дали всички елементи на l удовлетворяват p.\\
\pause
\textbf{Формула:} $\forall x\in l:\,p(x)$ \pause $\leftrightarrow \neg \exists x\in l:\,\neg p(x)$\\
\pause
\textbf{Решение:}
\begin{lstlisting}
(define (all? p? l)
(not (search (lambda (x) (not (p? x))) l)))
\end{lstlisting}
\end{frame}
\section{Двоични дървета}
\subsection{Представяне}
\begin{frame}[fragile]
\frametitle{Представяне на двоични дървета}
Представяме двоични дървета като вложени списъци от три елемента:\\[2ex]
\begin{columns}[t,onlytextwidth]
\begin{column}{0.5\textwidth}
\centering
\begin{forest} baseline
[корен [ляво] [дясно]]
\end{forest}
\end{column}
\begin{column}{0.5\textwidth}
\tt(<корен> <ляво> <дясно>\tt)
\end{column}
\end{columns}
\pause
\vspace{2ex}
Пример:
\begin{columns}[t,onlytextwidth]
\begin{column}{0.5\textwidth}
\centering
\begin{forest} baseline, for tree={circle,draw}
[1 [2] [3 [4] [5]]]
\end{forest}
\end{column}
\begin{column}{0.5\textwidth}
\begin{verbatim}
(1 (2 () ())
(3 (4 () ())
(5 () ())))
\end{verbatim}
\end{column}
\end{columns}
\end{frame}
\subsection{Операции}
\begin{frame}[fragile]
\frametitle{Базови операции}
Проверка за коректност:
\pause
\begin{lstlisting}
(define (tree? t)
(or (null? t)
(and (list t) (= (length t) 3))
(tree? (cadr t))
(tree? (caddr t))))
\end{lstlisting}
\pause
Конструктори:
\pause
\begin{lstlisting}
(define empty-tree '())
(define (make-tree root left right) (list root left right))
\end{lstlisting}
\pause
Селектори:
\pause
\begin{lstlisting}
(define root-tree car)
(define left-tree cadr)
(define right-tree caddr)
(define empty-tree? null?)
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Разширени операции}
Дълбочина на дърво:
\pause
\begin{lstlisting}
(define (depth-tree t)
(if (empty-tree? t) 0
(1+ (max (depth (left-tree t))
(depth (right-tree t))))))
\end{lstlisting}
\pause
Намиране на поддърво:
\pause
\begin{fixedarea}[.4]
\begin{onlyenv}<4 |trans:0>
\begin{lstlisting}
(define (memv-tree x t)
(cond ((empty-tree? t) #f)
((eqv? x (root-tree t)) t)
(else (or (memv-tree x (left-tree t))
(memv-tree x (right-tree t))))))
\end{lstlisting}
\end{onlyenv}
\begin{onlyenv}<5->
\begin{lstlisting}
(define (memv-tree x t)
(and (not (empty-tree? t))
(or (and (eqv? x (root-tree t)) t)
(memv-tree x (left-tree t))
(memv-tree x (right-tree t)))))
\end{lstlisting}
\end{onlyenv}
\end{fixedarea}
\end{frame}
\begin{frame}[fragile]
\frametitle{Търсене на път в двоично дърво}
\textbf{Задача:} Да се намери в дървото път от корена до даден възел \tt x.
\pause
\begin{fixedarea}[.7]
\begin{onlyenv}<2 |trans:0>
\begin{lstlisting}
(define (path-tree x t)
(cond ((empty-tree? t) #f)
((eqv? x (root-tree t)) (list x))
(else (cons#f (root-tree t)
(or (path-tree x (left-tree t))
(path-tree x (right-tree t)))))))
(define (cons#f h t) (and t (cons h t)))
\end{lstlisting}
\end{onlyenv}
\begin{onlyenv}<3->
\begin{lstlisting}
(define (path-tree x t)
(and (not (empty-tree? t))
(or (and (eqv? x (root-tree t)) (list x))
(cons#f (root-tree t)
(or (path-tree x (left-tree t))
(path-tree x (right-tree t)))))))
(define (cons#f h t) (and t (cons h t)))
\end{lstlisting}
\end{onlyenv}
\end{fixedarea}
\end{frame}
\section{Дълбоки списъци}
\begin{frame}<\switch{deeplists}>[fragile]
\frametitle{Работа с дълбоки списъци}
% TODO диаграма на списъка с наредени двойки
\begin{verbatim}
((1 (2)) (((3) 4) (5 (6)) () (7)) 8)
\end{verbatim}
\textbf{Задача.} Да се преброят в атомите в дълбок списък.\\
\textbf{Подход:} Обхождане в две посоки: хоризонтално и вертикално
\pause
\begin{itemize}[<+->]
\item \hzero{Хоризонтално дъно:} \rvl{достигане до празен списък \tt{()}}
\item \vzero{Вертикално дъно:} \rvl{достигане до друг атом}
\item \hstep{Хоризонтална стъпка:} \rvl{обхождане на опашката \tt{(cdr l)}}
\item \vstep{Вертикална стъпка:} \rvl{обхождане на главата \tt{(car l)}}
\end{itemize}
\vspace{2ex}
\onslide<+->
За удобство можем да дефинираме функцията \tt{atom?}:
\begin{lstlisting}
(define (atom? x) (and (not (null? x)) (not (pair? x))))
\end{lstlisting}
\end{frame}
\begin{frame}<\switch{deeplists}>[fragile]
\frametitle{Примери}
\small
\textbf{Задача.} Да се преброят в атомите в дълбок списък.\\
\evalsto{(count-atoms '((1 (2)) (((3) 4) (5 (6)) () (7)) 8))}8
\pause
\begin{lstlisting}
(define (count-atoms l)
(cond ((null? l) @\hzero0@)
((atom? l) @\vzero1@)
(else (+ @\vstep{(count-atoms (car l))} \hstep{(count-atoms (cdr l))}@))))
\end{lstlisting}
\vspace{2ex}
\pause
\textbf{Задача.} Да се съберат всички атоми от дълбок списък.\\
\evalsto{(flatten '((1 (2)) (((3) 4) (5 (6)) () (7)) 8))}{(1 2 3 4 5 6 7 8)}
\pause
\begin{lstlisting}
(define (flatten l)
(cond ((null? l) @\hzero{'()}@)
((atom? l) @\vzero{(list l)}@)
(else (append @\vstep{(flatten (car l))} \hstep{(flatten (cdr l))}@))))
\end{lstlisting}
\end{frame}
\begin{frame}<\switch{deeplists}>[fragile]
\frametitle{Примери}
\textbf{Задача.} Да се обърне редът на атомите в дълбок списък.\\
\evalsto{(deep-reverse '((1 (2)) (((3) 4) (5 (6)) () (7)) 8))}{(8 ((7) () ((6) 5) (4 (3))) ((2) 1))}
\pause
\begin{lstlisting}
(define (deep-reverse l)
(cond ((null? l) @\hzero{'()}@)
((atom? l) @\vzero{l}@)
(else (append @\hstep{(deep-reverse (cdr l))}@
@\vstep{(list (deep-reverse (car l)))}@))))
\end{lstlisting}
\end{frame}
% TODO: диаграма на дълбок списък без наредени двойки
\begin{frame}<\switch{deeplists}>[fragile]
\frametitle{Свиване на дълбоки списъци}
\tt{(deep-foldr }<х-дъно> <в-дъно> <операция> <списък>\tt)\\
\pause
\onslide<+->
\begin{lstlisting}
(define (deep-foldr op term nv l)
(cond ((null? l) @\hzero{nv}@)
((atom? l) @\vzero{(term l)}@)
(else (op @\vstep{(deep-foldr op term nv (car l))}@
@\hstep{(deep-foldr op term nv (cdr l))}@))))
\end{lstlisting}
\onslide<+->
\begin{lstlisting}
(define (count-atoms l) (deep-foldr @\rvl+ \rvl{(lambda (x) 1)} \rvl0@ l))
\end{lstlisting}
\onslide<+->
\begin{lstlisting}
(define (flatten l) (deep-foldr @\rvl{append} \rvl{list} \rvl{'()}@ l))
\end{lstlisting}
\onslide<+->
\begin{visibleenv}<12->
\begin{lstlisting}
(define (snoc x l) (append l (list x)))\end{lstlisting}%
\end{visibleenv}%
\begin{lstlisting}
(define (deep-reverse l) (deep-foldr @\rvl{snoc} \rvl{id} \rvl{'()}@ l))
\end{lstlisting}
\end{frame}
\begin{frame}<\switch{deeplists}>[fragile]
\frametitle{Директна реализация на \tt{deep-foldr}}
Как работи \tt{deep-foldr}?
\pause
\begin{itemize}[<+->]
\item пуска себе си рекурсивно за всеки елемент на дълбокия списък
\item при достигане на вертикално дъно (атоми) прилага \tt{term}
\item и събира резултатите с \tt{op}
\end{itemize}
\onslide<+->
Можем да реализираме \tt{deep-foldr} чрез \tt{map} и \tt{foldr}!
\onslide<+->
\begin{lstlisting}
(define (branch p? f g) (lambda (x) (p? x) (f x) (g x)))
(define (deep-foldr op term nv l)
(foldr @\hstep{op} \hzero{nv}@
(map (branch atom?
@\vzero{term}@
@\vstep{(lambda (l) (deep-foldr op term nv l))}@
l)))
\end{lstlisting}
\onslide<+->
\textbf{Задача.} Реализирайте функция за ляво свиване на дълбоки списъци \tt{deep-foldl}.
\end{frame}
\section{Графи}
\subsection{Представяне}
\begin{frame}<\switch{graphs}>[fragile]
\frametitle{Представяне на графи чрез асоциативни списъци}
\begin{columns}[t,onlytextwidth]
\begin{column}{0.7\textwidth}
\begin{center}
\samplegraph
\end{center}
\end{column}
\begin{column}{0.3\textwidth}
\begin{semiverbatim}