-
Notifications
You must be signed in to change notification settings - Fork 234
/
Copy pathsimple_grpc_infer_client.cc
376 lines (339 loc) · 12.9 KB
/
simple_grpc_infer_client.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
// Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of NVIDIA CORPORATION nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <getopt.h>
#include <unistd.h>
#include <iostream>
#include <string>
#include "grpc_client.h"
namespace tc = triton::client;
#define FAIL_IF_ERR(X, MSG) \
{ \
tc::Error err = (X); \
if (!err.IsOk()) { \
std::cerr << "error: " << (MSG) << ": " << err << std::endl; \
exit(1); \
} \
}
namespace {
void
ValidateShapeAndDatatype(
const std::string& name, std::shared_ptr<tc::InferResult> result)
{
std::vector<int64_t> shape;
FAIL_IF_ERR(
result->Shape(name, &shape), "unable to get shape for '" + name + "'");
// Validate shape
if ((shape.size() != 2) || (shape[0] != 1) || (shape[1] != 16)) {
std::cerr << "error: received incorrect shapes for '" << name << "'"
<< std::endl;
exit(1);
}
std::string datatype;
FAIL_IF_ERR(
result->Datatype(name, &datatype),
"unable to get datatype for '" + name + "'");
// Validate datatype
if (datatype.compare("INT32") != 0) {
std::cerr << "error: received incorrect datatype for '" << name
<< "': " << datatype << std::endl;
exit(1);
}
}
void
Usage(char** argv, const std::string& msg = std::string())
{
if (!msg.empty()) {
std::cerr << "error: " << msg << std::endl;
}
std::cerr << "Usage: " << argv[0] << " [options]" << std::endl;
std::cerr << "\t-v" << std::endl;
std::cerr << "\t-m <model name>" << std::endl;
std::cerr << "\t-u <URL for inference service>" << std::endl;
std::cerr << "\t-t <client timeout in microseconds>" << std::endl;
std::cerr << "\t-H <HTTP header>" << std::endl;
std::cerr
<< "\tFor -H, header must be 'Header:Value'. May be given multiple times."
<< std::endl;
std::cerr << "\t-C <grpc compression algorithm>. \'deflate\', "
"\'gzip\' and \'none\' are supported"
<< std::endl;
std::cerr << "\t-c <use_cached_channel>. "
" Use cached channel when creating new client. "
" Specify 'true' or 'false'. True by default"
<< std::endl;
std::cerr << std::endl;
exit(1);
}
} // namespace
int
main(int argc, char** argv)
{
bool verbose = false;
std::string url("localhost:8001");
tc::Headers http_headers;
uint32_t client_timeout = 0;
bool use_ssl = false;
std::string root_certificates;
std::string private_key;
std::string certificate_chain;
grpc_compression_algorithm compression_algorithm =
grpc_compression_algorithm::GRPC_COMPRESS_NONE;
bool test_use_cached_channel = false;
bool use_cached_channel = true;
// {name, has_arg, *flag, val}
static struct option long_options[] = {
{"ssl", 0, 0, 0},
{"root-certificates", 1, 0, 1},
{"private-key", 1, 0, 2},
{"certificate-chain", 1, 0, 3}};
// Parse commandline...
int opt;
while ((opt = getopt_long(argc, argv, "vu:t:H:C:c:", long_options, NULL)) !=
-1) {
switch (opt) {
case 0:
use_ssl = true;
break;
case 1:
root_certificates = optarg;
break;
case 2:
private_key = optarg;
break;
case 3:
certificate_chain = optarg;
break;
case 'v':
verbose = true;
break;
case 'u':
url = optarg;
break;
case 't':
client_timeout = std::stoi(optarg);
break;
case 'H': {
std::string arg = optarg;
std::string header = arg.substr(0, arg.find(":"));
if (header.size() == arg.size() || header.empty()) {
Usage(
argv,
"HTTP header specified incorrectly. Must be formmated as "
"'Header:Value'");
} else {
http_headers[header] = arg.substr(header.size() + 1);
}
break;
}
case 'C': {
std::string algorithm_str{optarg};
if (algorithm_str.compare("deflate") == 0) {
compression_algorithm =
grpc_compression_algorithm::GRPC_COMPRESS_DEFLATE;
} else if (algorithm_str.compare("gzip") == 0) {
compression_algorithm =
grpc_compression_algorithm::GRPC_COMPRESS_GZIP;
} else if (algorithm_str.compare("none") == 0) {
compression_algorithm =
grpc_compression_algorithm::GRPC_COMPRESS_NONE;
} else {
Usage(
argv,
"unsupported compression algorithm specified... only "
"\'deflate\', "
"\'gzip\' and \'none\' are supported.");
}
break;
}
case 'c': {
test_use_cached_channel = true;
std::string arg = optarg;
if (arg.find("false") != std::string::npos) {
use_cached_channel = false;
} else if (arg.find("true") != std::string::npos) {
use_cached_channel = true;
} else {
Usage(argv, "need to specify true or false for use_cached_channel");
}
break;
}
case '?':
Usage(argv);
break;
}
}
// We use a simple model that takes 2 input tensors of 16 integers
// each and returns 2 output tensors of 16 integers each. One output
// tensor is the element-wise sum of the inputs and one output is
// the element-wise difference.
std::string model_name = "simple";
std::string model_version = "";
// Create a InferenceServerGrpcClient instance to communicate with the
// server using gRPC protocol.
std::unique_ptr<tc::InferenceServerGrpcClient> client;
tc::SslOptions ssl_options = tc::SslOptions();
std::string err;
if (use_ssl) {
ssl_options.root_certificates = root_certificates;
ssl_options.private_key = private_key;
ssl_options.certificate_chain = certificate_chain;
err = "unable to create secure grpc client";
} else {
err = "unable to create grpc client";
}
// Run with the same name to ensure cached channel is not used
int numRuns = test_use_cached_channel ? 2 : 1;
for (int i = 0; i < numRuns; ++i) {
FAIL_IF_ERR(
tc::InferenceServerGrpcClient::Create(
&client, url, verbose, use_ssl, ssl_options, tc::KeepAliveOptions(),
use_cached_channel),
err);
if (verbose) {
std::cout << "There are " << client->GetNumCachedChannels()
<< " cached channels" << std::endl;
}
// Create the data for the two input tensors. Initialize the first
// to unique integers and the second to all ones.
std::vector<int32_t> input0_data(16);
std::vector<int32_t> input1_data(16);
for (size_t i = 0; i < 16; ++i) {
input0_data[i] = i;
input1_data[i] = 1;
}
std::vector<int64_t> shape{1, 16};
// Initialize the inputs with the data.
tc::InferInput* input0;
tc::InferInput* input1;
FAIL_IF_ERR(
tc::InferInput::Create(&input0, "INPUT0", shape, "INT32"),
"unable to get INPUT0");
std::shared_ptr<tc::InferInput> input0_ptr;
input0_ptr.reset(input0);
FAIL_IF_ERR(
tc::InferInput::Create(&input1, "INPUT1", shape, "INT32"),
"unable to get INPUT1");
std::shared_ptr<tc::InferInput> input1_ptr;
input1_ptr.reset(input1);
FAIL_IF_ERR(
input0_ptr->AppendRaw(
reinterpret_cast<uint8_t*>(&input0_data[0]),
input0_data.size() * sizeof(int32_t)),
"unable to set data for INPUT0");
FAIL_IF_ERR(
input1_ptr->AppendRaw(
reinterpret_cast<uint8_t*>(&input1_data[0]),
input1_data.size() * sizeof(int32_t)),
"unable to set data for INPUT1");
// Generate the outputs to be requested.
tc::InferRequestedOutput* output0;
tc::InferRequestedOutput* output1;
FAIL_IF_ERR(
tc::InferRequestedOutput::Create(&output0, "OUTPUT0"),
"unable to get 'OUTPUT0'");
std::shared_ptr<tc::InferRequestedOutput> output0_ptr;
output0_ptr.reset(output0);
FAIL_IF_ERR(
tc::InferRequestedOutput::Create(&output1, "OUTPUT1"),
"unable to get 'OUTPUT1'");
std::shared_ptr<tc::InferRequestedOutput> output1_ptr;
output1_ptr.reset(output1);
// The inference settings. Will be using default for now.
tc::InferOptions options(model_name);
options.model_version_ = model_version;
options.client_timeout_ = client_timeout;
std::vector<tc::InferInput*> inputs = {input0_ptr.get(), input1_ptr.get()};
std::vector<const tc::InferRequestedOutput*> outputs = {
output0_ptr.get(), output1_ptr.get()};
tc::InferResult* results;
FAIL_IF_ERR(
client->Infer(
&results, options, inputs, outputs, http_headers,
compression_algorithm),
"unable to run model");
std::shared_ptr<tc::InferResult> results_ptr;
results_ptr.reset(results);
// Validate the results...
ValidateShapeAndDatatype("OUTPUT0", results_ptr);
ValidateShapeAndDatatype("OUTPUT1", results_ptr);
// Get pointers to the result returned...
int32_t* output0_data;
size_t output0_byte_size;
FAIL_IF_ERR(
results_ptr->RawData(
"OUTPUT0", (const uint8_t**)&output0_data, &output0_byte_size),
"unable to get result data for 'OUTPUT0'");
if (output0_byte_size != 64) {
std::cerr << "error: received incorrect byte size for 'OUTPUT0': "
<< output0_byte_size << std::endl;
exit(1);
}
int32_t* output1_data;
size_t output1_byte_size;
FAIL_IF_ERR(
results_ptr->RawData(
"OUTPUT1", (const uint8_t**)&output1_data, &output1_byte_size),
"unable to get result data for 'OUTPUT1'");
if (output1_byte_size != 64) {
std::cerr << "error: received incorrect byte size for 'OUTPUT1': "
<< output1_byte_size << std::endl;
exit(1);
}
for (size_t i = 0; i < 16; ++i) {
std::cout << input0_data[i] << " + " << input1_data[i] << " = "
<< *(output0_data + i) << std::endl;
std::cout << input0_data[i] << " - " << input1_data[i] << " = "
<< *(output1_data + i) << std::endl;
if ((input0_data[i] + input1_data[i]) != *(output0_data + i)) {
std::cerr << "error: incorrect sum" << std::endl;
exit(1);
}
if ((input0_data[i] - input1_data[i]) != *(output1_data + i)) {
std::cerr << "error: incorrect difference" << std::endl;
exit(1);
}
}
// Get full response
std::cout << results_ptr->DebugString() << std::endl;
tc::InferStat infer_stat;
client->ClientInferStat(&infer_stat);
std::cout << "======Client Statistics======" << std::endl;
std::cout << "completed_request_count "
<< infer_stat.completed_request_count << std::endl;
std::cout << "cumulative_total_request_time_ns "
<< infer_stat.cumulative_total_request_time_ns << std::endl;
std::cout << "cumulative_send_time_ns "
<< infer_stat.cumulative_send_time_ns << std::endl;
std::cout << "cumulative_receive_time_ns "
<< infer_stat.cumulative_receive_time_ns << std::endl;
inference::ModelStatisticsResponse model_stat;
client->ModelInferenceStatistics(&model_stat, model_name);
std::cout << "======Model Statistics======" << std::endl;
std::cout << model_stat.DebugString() << std::endl;
std::cout << "PASS : Infer" << std::endl;
}
return 0;
}