-
Notifications
You must be signed in to change notification settings - Fork 234
/
Copy pathsimple_grpc_sequence_stream_infer_client.py
executable file
·280 lines (252 loc) · 9.66 KB
/
simple_grpc_sequence_stream_infer_client.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
#!/usr/bin/env python
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import argparse
import queue
import sys
import uuid
from functools import partial
import numpy as np
import tritonclient.grpc as grpcclient
from tritonclient.utils import InferenceServerException
FLAGS = None
class UserData:
def __init__(self):
self._completed_requests = queue.Queue()
# Define the callback function. Note the last two parameters should be
# result and error. InferenceServerClient would povide the results of an
# inference as grpcclient.InferResult in result. For successful
# inference, error will be None, otherwise it will be an object of
# tritonclientutils.InferenceServerException holding the error details
def callback(user_data, result, error):
if error:
user_data._completed_requests.put(error)
else:
user_data._completed_requests.put(result)
def async_stream_send(
triton_client, values, batch_size, sequence_id, model_name, model_version
):
count = 1
for value in values:
# Create the tensor for INPUT
value_data = np.full(shape=[batch_size, 1], fill_value=value, dtype=np.int32)
inputs = []
inputs.append(grpcclient.InferInput("INPUT", value_data.shape, "INT32"))
# Initialize the data
inputs[0].set_data_from_numpy(value_data)
outputs = []
outputs.append(grpcclient.InferRequestedOutput("OUTPUT"))
# Issue the asynchronous sequence inference.
triton_client.async_stream_infer(
model_name=model_name,
inputs=inputs,
outputs=outputs,
request_id="{}_{}".format(sequence_id, count),
sequence_id=sequence_id,
sequence_start=(count == 1),
sequence_end=(count == len(values)),
)
count = count + 1
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-v",
"--verbose",
action="store_true",
required=False,
default=False,
help="Enable verbose output",
)
parser.add_argument(
"-u",
"--url",
type=str,
required=False,
default="localhost:8001",
help="Inference server URL and it gRPC port. Default is localhost:8001.",
)
parser.add_argument(
"-t",
"--stream-timeout",
type=float,
required=False,
default=None,
help="Stream timeout in seconds. Default is None.",
)
parser.add_argument(
"-d",
"--dyna",
action="store_true",
required=False,
default=False,
help="Assume dynamic sequence model",
)
parser.add_argument(
"-o",
"--offset",
type=int,
required=False,
default=0,
help="Add offset to sequence ID used",
)
FLAGS = parser.parse_args()
# We use custom "sequence" models which take 1 input
# value. The output is the accumulated value of the inputs. See
# src/custom/sequence.
int_sequence_model_name = (
"simple_dyna_sequence" if FLAGS.dyna else "simple_sequence"
)
string_sequence_model_name = (
"simple_string_dyna_sequence" if FLAGS.dyna else "simple_sequence"
)
model_version = ""
batch_size = 1
values = [11, 7, 5, 3, 2, 0, 1]
# Will use two sequences and send them asynchronously. Note the
# sequence IDs should be non-zero because zero is reserved for
# non-sequence requests.
int_sequence_id0 = 1000 + FLAGS.offset * 2
int_sequence_id1 = 1001 + FLAGS.offset * 2
# For string sequence IDs, the dyna backend requires that the
# sequence id be decodable into an integer, otherwise we'll use
# a UUID4 sequence id and a model that doesn't require corrid
# control.
string_sequence_id0 = str(1002 + FLAGS.offset) if FLAGS.dyna else str(uuid.uuid4())
int_result0_list = []
int_result1_list = []
string_result0_list = []
user_data = UserData()
# It is advisable to use client object within with..as clause
# when sending streaming requests. This ensures the client
# is closed when the block inside with exits.
with grpcclient.InferenceServerClient(
url=FLAGS.url, verbose=FLAGS.verbose
) as triton_client:
try:
# Establish stream
triton_client.start_stream(
callback=partial(callback, user_data),
stream_timeout=FLAGS.stream_timeout,
)
# Now send the inference sequences...
async_stream_send(
triton_client,
[0] + values,
batch_size,
int_sequence_id0,
int_sequence_model_name,
model_version,
)
async_stream_send(
triton_client,
[100] + [-1 * val for val in values],
batch_size,
int_sequence_id1,
int_sequence_model_name,
model_version,
)
async_stream_send(
triton_client,
[20] + [-1 * val for val in values],
batch_size,
string_sequence_id0,
string_sequence_model_name,
model_version,
)
except InferenceServerException as error:
print(error)
sys.exit(1)
# Retrieve results...
recv_count = 0
while recv_count < (3 * (len(values) + 1)):
data_item = user_data._completed_requests.get()
if type(data_item) == InferenceServerException:
print(data_item)
sys.exit(1)
else:
try:
this_id = data_item.get_response().id.split("_")[0]
if int(this_id) == int_sequence_id0:
int_result0_list.append(data_item.as_numpy("OUTPUT"))
elif int(this_id) == int_sequence_id1:
int_result1_list.append(data_item.as_numpy("OUTPUT"))
elif this_id == string_sequence_id0:
string_result0_list.append(data_item.as_numpy("OUTPUT"))
else:
print(
"unexpected sequence id returned by the server: {}".format(
this_id
)
)
sys.exit(1)
except ValueError:
string_result0_list.append(data_item.as_numpy("OUTPUT"))
recv_count = recv_count + 1
for i in range(len(int_result0_list)):
int_seq0_expected = 1 if (i == 0) else values[i - 1]
int_seq1_expected = 101 if (i == 0) else values[i - 1] * -1
# For string sequence ID we are testing two different backends
if i == 0 and FLAGS.dyna:
string_seq0_expected = 20
elif i == 0 and not FLAGS.dyna:
string_seq0_expected = 21
elif i != 0 and FLAGS.dyna:
string_seq0_expected = values[i - 1] * -1 + int(
string_result0_list[i - 1][0][0]
)
else:
string_seq0_expected = values[i - 1] * -1
# The dyna_sequence custom backend adds the correlation ID
# to the last request in a sequence.
if FLAGS.dyna and (i != 0) and (values[i - 1] == 1):
int_seq0_expected += int_sequence_id0
int_seq1_expected += int_sequence_id1
string_seq0_expected += int(string_sequence_id0)
print(
"["
+ str(i)
+ "] "
+ str(int_result0_list[i][0][0])
+ " : "
+ str(int_result1_list[i][0][0])
+ " : "
+ str(string_result0_list[i][0][0])
)
if (
(int_seq0_expected != int_result0_list[i][0][0])
or (int_seq1_expected != int_result1_list[i][0][0])
or (string_seq0_expected != string_result0_list[i][0][0])
):
print(
"[ expected ] "
+ str(int_seq0_expected)
+ " : "
+ str(int_seq1_expected)
+ " : "
+ str(string_seq0_expected)
)
sys.exit(1)
print("PASS: Sequence")