-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathABR.py
58 lines (42 loc) · 1.6 KB
/
ABR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# import tensorflow as tf
#NN_MODEL = "./submit/results/nn_model_ep_18200.ckpt" # model path settings, if using ML-based method
class Algorithm:
def __init__(self):
# fill your self params
self.some_param = 0
# Initail
def Initial(self):
# Initail your session or something
self.some_param = 0
# Define your algo
def run(self, time, S_time_interval, S_send_data_size, S_chunk_len, S_rebuf, S_buffer_size, S_play_time_len,S_end_delay, S_decision_flag, S_buffer_flag,S_cdn_flag,S_skip_time, end_of_video, cdn_newest_id,download_id,cdn_has_frame,IntialVars):
# If you choose the marchine learning
'''state = []
state[0] = ...
state[1] = ...
state[2] = ...
state[3] = ...
state[4] = ...
decision = actor.predict(state).argmax()
bit_rate, target_buffer = decison//4, decison % 4 .....
return bit_rate, target_buffer'''
# If you choose BBA
RESEVOIR = 0.5
CUSHION = 1.5
if S_buffer_size[-1] < RESEVOIR:
bit_rate = 0
elif S_buffer_size[-1] >= RESEVOIR + CUSHION and S_buffer_size[-1] < CUSHION +CUSHION:
bit_rate = 2
elif S_buffer_size[-1] >= CUSHION + CUSHION:
bit_rate = 3
else:
bit_rate = 1
target_buffer = 0
latency_limit = 4
return bit_rate, target_buffer, latency_limit
# If you choose other
#......
def get_params(self):
# get your params
your_params = []
return your_params