-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
134 lines (118 loc) · 5.24 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
from typing import Mapping, Any, Iterable
import csv
from collections import OrderedDict
import statistics
import warnings
from os.path import exists
from os.path import join as pjoin
import torch
from torch import nn
from torch.optim import SGD
from torch.optim.lr_scheduler import LambdaLR
import dca.models32 as models
from dca.dataloaders import get_cifar10_train_loaders, \
get_cifar10_test_loader
from dca.utils import autoinitcoroutine, cp, coro_npybatchgatherer
from dca.optim import schedule_midway_linear_decay
from dca.calibration import bins2acc, bins2ece, bins2conf
TRAINDATALOADERS = {'cifar10': get_cifar10_train_loaders}
TESTDATALOADER = {'cifar10': get_cifar10_test_loader}
ALLMODELS = models.MODELS
STANDARDMODELS = {
k: v for k, v in ALLMODELS.items() if k in models.standard.__all__}
MCDROPMODELS = {
k: v for k, v in ALLMODELS.items() if k in models.mcdrop.__all__}
SWAGMODELS = {k: v for k, v in ALLMODELS.items() if k in models.swag.__all__}
DCAMODELS = {k: v for k, v in ALLMODELS.items() if k in models.dca.__all__}
DCSWAGMODELS = {
k: v for k, v in ALLMODELS.items() if k in models.dcswag.__all__}
# number of data
NTRAIN, NTEST = 50000, 10000
# number of classes
OUTCLASS = {'cifar10': 10}
def savecheckpoint(
to, modelname: str, modelargs: Iterable[Any],
modelkwargs: Mapping[str, Any], model: nn.Module, optimizer: SGD,
scheduler: LambdaLR, **kwargs) -> None:
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=UserWarning)
models.savemodel(to, modelname, modelargs, modelkwargs, model, **{
'optimargs': optimizer.defaults,
'optimstates': optimizer.state_dict(),
'schedulerstates': scheduler.state_dict()}, **kwargs)
def loadcheckpoint(fromfile, device=torch.device('cpu')):
model, dic = models.loadmodel(fromfile, device)
optimizer = SGD(model.parameters(), **dic.pop('optimargs'))
optimizer.load_state_dict(dic.pop('optimstates'))
scheduler = schedule_midway_linear_decay(optimizer)
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=UserWarning)
scheduler.load_state_dict(dic.pop('schedulerstates'))
startepoch = scheduler.last_epoch
return startepoch, model, optimizer, scheduler, dic
@autoinitcoroutine
def coro_trackbestloss(
train_dir, modelname: str, modelargs, modelkwargs, finetuneepoch=0,
predictions=None, initbest=float('inf')):
best_epoch = None
bestbins = None
best_path = pjoin(train_dir, 'best_model.pt')
try:
epoch, model, bins, loss = (yield)
while True:
if finetuneepoch is not None and epoch == finetuneepoch:
print('### Tracking best finetune result ... ###\n')
initbest = float('inf')
if loss < initbest: # is better
print(f'### BEST! epoch={epoch}, loss={loss:.6f} ###\n')
# update best values
initbest, best_epoch, bestbins = loss, epoch, bins
# save new model
models.savemodel(
best_path, modelname, modelargs, modelkwargs, model,
epoch=epoch, bins=bins, loss=loss)
# save output predictions if exists
if predictions and exists(pjoin(train_dir, predictions)):
cp(pjoin(train_dir, predictions),
pjoin(train_dir, f'best_{predictions}'))
else: # not better
pass
epoch, model, bins, loss = (yield)
except StopIteration:
print(f'### Best result: epoch={best_epoch}, loss={initbest}, '
f'acc={bins2acc(bestbins)}, conf={bins2conf(bestbins)}, '
f'ece={bins2ece(bestbins)}\n')
print(f'### Model saved at: {best_path} ###\n')
return initbest, best_epoch, bestbins, best_path
def get_outputsaver(save_dir, ndata, outclass, predictionfile):
return coro_npybatchgatherer(
pjoin(save_dir, predictionfile), ndata, (outclass,), True,
str(torch.get_default_dtype())[6:])
def summarize_csv(csvfile):
with open(csvfile, 'r') as csvfp:
reader = csv.DictReader(csvfp)
criteria = [k for k in reader.fieldnames if k != 'epoch']
maxlen = max(len(k) for k in criteria)
values = {k: [] for k in criteria}
for row in reader:
for k, v in row.items():
if k != 'epoch':
values[k].append(float(v))
for k, vals in values.items():
print(f'{k:>{maxlen}}:\tmean {statistics.mean(vals):.4f}, '
f'std={statistics.stdev(vals):.4f}')
def average_state_dicts(state_dicts):
avgsd = OrderedDict()
for k, vs in zip(state_dicts[0].keys(),
zip(*[sd.values() for sd in state_dicts])):
if torch.is_floating_point(vs[0]):
avgsd[k] = torch.mean(torch.stack(vs, 0), 0)
else:
avgsd[k] = vs[0]
return avgsd
def load_averaged_model(fromfiles, device=torch.device('cpu')):
dics = [torch.load(f, map_location=device) for f in fromfiles]
model = ALLMODELS[dics[0]['modelname']](*dics[0]['modelargs']).to(device)
avgsd = average_state_dicts([d.pop('modelstates') for d in dics])
model.load_state_dict(avgsd)
return model, dics