-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_swag.py
287 lines (236 loc) · 10.9 KB
/
test_swag.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import argparse
from os import listdir
from os.path import join as pjoin, isdir, exists
import torch
import torch.nn.functional as nnf
from dca.swag import SWAG
from dca.utils import coro_timer, mkdirp
from dca.models32 import loadmodel
from dca.trainutils import do_epoch, do_evalbatch, check_cuda, \
deteministic_run, SummaryWriter, bn_update
from dca.dataloaders import get_cifar10_test_loader, \
get_cifar10_train_loaders
from utils import get_svhn_loader, get_roc_curve_auc_score, get_outputsaver, \
summarize_csv, coro_log, SVHNInfo, confidence_from_prediction_npy, mean_std
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('traindir', type=str,
help='path that collects all trained runs.')
parser.add_argument('-j', '--workers', default=1, type=int, metavar='N',
help='number of data loading workers')
parser.add_argument('-sp', '--svhn_split', default='test',
choices=SVHNInfo.split,
help='available split: ' + ' | '.join(SVHNInfo.split))
parser.add_argument('-b', '--batch', default=128, type=int,
metavar='N', help='test mini-batch size')
parser.add_argument('--tvsplit', default=0.9, type=float,
metavar='RATIO',
help='ratio of data used for training')
parser.add_argument('-pf', '--printfreq', default=10, type=int,
metavar='N', help='print frequency')
parser.add_argument('-d', '--device', default='cpu', type=str,
metavar='DEV', help='run on cpu/cuda')
parser.add_argument('-s', '--seed', type=int, default=0,
help='fixes seed for reproducibility')
parser.add_argument('-sd', '--save_dir',
help='The directory used to save test results',
default='save_temp', type=str)
parser.add_argument('-so', '--saveoutput', action='store_true',
help='save output probability')
parser.add_argument('-dd', '--data_dir',
help='The directory to find/store dataset',
default='../data', type=str)
parser.add_argument('-tbd', '--tensorboard_dir', default='', type=str,
help='if specified, record data for tensorboard.')
parser.add_argument('-sms', '--swag_modelsamples', type=int, default=64,
help='number of swag model samples')
parser.add_argument('-ssm', '--swag_samplemode', default='modelwise',
choices=SWAG.sample_mode,
help=f'specify at which level sampling will happen')
parser.add_argument('-srr', '--swag_reducerank', type=int,
help='if specified, limit rank of off-diagonal part')
parser.add_argument('-srs', '--swag_reducestep', type=int, default=1,
help='if reduce rank, step size for thinning')
parser.add_argument('-sbu', '--swag_bnupdate', action='store_true',
help='update BatchNorm for averaged model')
return parser.parse_args()
def do_swagevalbatch(batchinput, models):
inputs, gt = batchinput[:-1], batchinput[-1]
cumloss = 0.0
cumprob = torch.zeros([])
nmodel = len(models)
for model in models:
output = model(*inputs)
loss = nnf.nll_loss(nnf.log_softmax(output, 1), gt) / nmodel
cumloss += loss.item()
cumprob = cumprob + nnf.softmax(output, 1) / nmodel
return cumprob, gt, cumloss
if __name__ == '__main__':
timer = coro_timer()
t_init = next(timer)
print(f'>>> Test initiated at {t_init.isoformat()} <<<\n')
args = get_args()
print(args, end='\n\n')
# if seed is specified, run deterministically
if args.seed is not None:
deteministic_run(seed=args.seed)
# get device for this experiment
device = torch.device(args.device)
if device != torch.device('cpu'):
check_cuda()
# build train_dir for this experiment
mkdirp(args.save_dir)
# prep tensorboard if specified
if args.tensorboard_dir:
mkdirp(args.tensorboard_dir)
sw = SummaryWriter(args.tensorboard_dir)
else:
sw = None
# distinguish between runs on validation data and test data
log_ece = coro_log(sw, args.printfreq, args.save_dir)
bnupd_loader, _ = get_cifar10_train_loaders(
args.data_dir, args.tvsplit, args.workers,
(device != torch.device('cpu')), args.batch, args.batch)
indomain_prefix = 'indomain_test'
indomain_loader = get_cifar10_test_loader(
args.data_dir, args.workers, (device != torch.device('cpu')),
args.batch)
ood_prefix = 'ood_test'
ood_loader = get_svhn_loader(
args.data_dir, args.workers, (device != torch.device('cpu')),
args.batch, args.svhn_split)
swag_aucroc_scores = []
swa_aucroc_scores = []
# iterate over all trained runs, assume model name best_model.pt
for runfolder in sorted([d for d in listdir(args.traindir)
if isdir(pjoin(args.traindir, d))]):
model_path = pjoin(args.traindir, runfolder, 'best_model.pt')
if not exists(model_path):
print(f'skipping {pjoin(args.traindir, runfolder)}\n')
continue
print(f'loading model from {model_path} ...\n')
# resume model
swagmodel, dic = loadmodel(model_path, device)
if args.swag_reducerank is not None:
swagmodel.reduce_rank(args.swag_reducerank, args.swag_reducestep)
outclass = dic['modelargs'][0]
print(f'>>> Test starts at {next(timer)[0].isoformat()} <<<\n')
# sample swag models and do bn update if asked for
with torch.no_grad():
# sample models from swag
sampledmodels = [swagmodel.sampled_model(mode=args.swag_samplemode)
for _ in range(args.swag_modelsamples)]
# prepare them for evaluation
for i, model in enumerate(sampledmodels):
if args.swag_bnupdate:
print(f'updating BatchNorm for SWAG model sample '
f'{i+1}/{len(sampledmodels)} ...', end='')
bn_update(bnupd_loader, model, device=device)
print(' Done.')
model.eval()
print()
# do in-domain SWAG sampled model evaluation
if args.saveoutput:
outputsaver = get_outputsaver(
args.save_dir, 10000, outclass,
f'predictions_{indomain_prefix}_{runfolder}.npy')
else:
outputsaver = None
log_ece.send(
(runfolder, indomain_prefix, len(indomain_loader), outputsaver))
with torch.no_grad():
do_epoch(indomain_loader, do_swagevalbatch, log_ece, device,
models=sampledmodels)
log_ece.throw(StopIteration)
if args.saveoutput:
outputsaver.close()
# do OOD SWAG sampled model evaluation
if args.saveoutput:
outputsaver = get_outputsaver(
args.save_dir, SVHNInfo.count[args.svhn_split], outclass,
f'predictions_{ood_prefix}_{runfolder}.npy')
else:
outputsaver = None
log_ece.send((runfolder, ood_prefix, len(ood_loader), outputsaver))
with torch.no_grad():
do_epoch(ood_loader, do_swagevalbatch, log_ece, device,
models=sampledmodels)
log_ece.throw(StopIteration)
if args.saveoutput:
outputsaver.close()
del sampledmodels
indomain_conf = confidence_from_prediction_npy(
pjoin(args.save_dir,
f'predictions_{indomain_prefix}_{runfolder}.npy'))
ood_conf = confidence_from_prediction_npy(
pjoin(args.save_dir,
f'predictions_{ood_prefix}_{runfolder}.npy'))
aucroc = get_roc_curve_auc_score(indomain_conf, ood_conf)[0]
print(f'AUC-ROC score: {aucroc}')
swag_aucroc_scores.append(aucroc)
print(f'>>> Time elapsed: {next(timer)[1]} <<<\n')
# load swa model and do bn update if required
with torch.no_grad():
swamodel = swagmodel.averaged_model()
if args.swag_bnupdate:
print('updating BatchNorm ...', end='')
bn_update(bnupd_loader, swamodel, device=device)
print(' Done.')
swamodel.eval()
# do in-domain SWA evaluation
prefix = 'swa_' + indomain_prefix
if args.saveoutput:
outputsaver = get_outputsaver(
args.save_dir, 10000, outclass,
f'predictions_{prefix}_{runfolder}.npy')
else:
outputsaver = None
log_ece.send((runfolder, prefix, len(indomain_loader), outputsaver))
with torch.no_grad():
do_epoch(indomain_loader, do_evalbatch, log_ece, device,
model=swamodel)
log_ece.throw(StopIteration)
if args.saveoutput:
outputsaver.close()
# do OOD SWA evaluation
prefix = 'swa_' + ood_prefix
if args.saveoutput:
outputsaver = get_outputsaver(
args.save_dir, SVHNInfo.count[args.svhn_split], outclass,
f'predictions_{prefix}_{runfolder}.npy')
else:
outputsaver = None
log_ece.send((runfolder, prefix, len(ood_loader), outputsaver))
with torch.no_grad():
do_epoch(ood_loader, do_evalbatch, log_ece, device,
model=swamodel)
log_ece.throw(StopIteration)
if args.saveoutput:
outputsaver.close()
del swamodel
indomain_conf = confidence_from_prediction_npy(
pjoin(args.save_dir,
f'predictions_swa_{indomain_prefix}_{runfolder}.npy'))
ood_conf = confidence_from_prediction_npy(
pjoin(args.save_dir,
f'predictions_swa_{ood_prefix}_{runfolder}.npy'))
aucroc = get_roc_curve_auc_score(indomain_conf, ood_conf)[0]
print(f'AUC-ROC score: {aucroc}')
swa_aucroc_scores.append(aucroc)
print(f'>>> Time elapsed: {next(timer)[1]} <<<\n')
print('\n=== SWA results ===\n')
print(f'{indomain_prefix}:')
summarize_csv(pjoin(args.save_dir, f'swa_{indomain_prefix}.csv'))
print(f'\n{ood_prefix}:')
summarize_csv(pjoin(args.save_dir, f'swa_{ood_prefix}.csv'))
mean, std = mean_std(swa_aucroc_scores)
print(f'\nAUC-ROC score:\tmean {mean:.4f}, std={std:.4f} \n')
print('=== SWAG results ===\n')
print(f'{indomain_prefix}:')
summarize_csv(pjoin(args.save_dir, f'{indomain_prefix}.csv'))
print(f'\n{ood_prefix}:')
summarize_csv(pjoin(args.save_dir, f'{ood_prefix}.csv'))
mean, std = mean_std(swag_aucroc_scores)
print(f'\nAUC-ROC score:\tmean {mean:.4f}, std={std:.4f} \n')
print(f'>>> Test completed at {next(timer)[0].isoformat()} <<<\n')
log_ece.close()