-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathrender_video.py
139 lines (112 loc) · 4.78 KB
/
render_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
def isnotebook():
try:
shell = get_ipython().__class__.__name__
if shell == 'ZMQInteractiveShell':
return True # Jupyter notebook or qtconsole
elif shell == 'TerminalInteractiveShell':
return False # Terminal running IPython
else:
return False # Other type (?)
except NameError:
return False # Probably standard Python interpreter
import os, sys
if isnotebook() and sys.path[-1] != "../intrinsic-neural-fields":
sys.path.append("../intrinsic-neural-fields")
from os.path import join, exists, basename, dirname
import argparse, shlex
import matplotlib.pyplot as plt
from fractions import Fraction
import numpy as np
import torch
from cameras import cam_resize, load_extr_and_intr_camera, cam_crop
from config import load_config
from renderer import make_renderer_with_trained_model
if isnotebook():
print("LOADING tqdm.notebook")
from tqdm.notebook import tqdm
else:
print("LOADING tqdm for a python script")
from tqdm import tqdm
resolutions = {
"2160p": (3840, 2160),
"1080p": (1920, 1080),
"720p": (1280, 720),
}
def parse_args(s=None):
parser = argparse.ArgumentParser()
parser.add_argument("--out_dir", type=str)
parser.add_argument("--config_path", type=str)
parser.add_argument("--cameras_path", type=str)
parser.add_argument("--height", type=int)
parser.add_argument("--width", type=int)
parser.add_argument("--resolution", choices=tuple(resolutions.keys()))
parser.add_argument("--turns", type=float, default=2)
parser.add_argument("--duration", type=float, default=15)
parser.add_argument("--fps", type=int, default=60)
if s is None:
# Called as script
args = parser.parse_args()
else:
# Used in notebook
args = parser.parse_args(shlex.split(s))
return args
if __name__ == "__main__":
args = parse_args()
config = load_config(args.config_path)
### Make Renderer ###
renderer = make_renderer_with_trained_model(config)
def render_view(camCv2world_in, cam_intrinsic, pose_obj=np.eye(4)):
pose_obj = torch.from_numpy(pose_obj).to(dtype=camCv2world_in.dtype, device=camCv2world_in.device)
camCv2world = torch.eye(4, dtype=camCv2world_in.dtype, device=camCv2world_in.device)
camCv2world[:3, :4] = camCv2world_in
pose_render = pose_obj @ camCv2world
renderer.set_height(cam_intrinsic["height"])
renderer.set_width(cam_intrinsic["width"])
return renderer.render(pose_render[:3], cam_intrinsic["K"])
### Change Intrinsics ###
camCv2world, K = load_extr_and_intr_camera(args.cameras_path)
cam_orig = {
"K": K,
"height": config["data"]["img_height"],
"width": config["data"]["img_width"],
}
res = resolutions[args.resolution]
factor_width = Fraction(res[0], cam_orig['width'])
factor_height = Fraction(res[1], cam_orig['height'])
factor = min(factor_height, factor_width)
new_width = cam_orig['width']*factor
new_height = cam_orig['height']*factor
assert int(new_height) == new_height
assert int(new_width) == new_width
new_width, new_height = int(new_width), int(new_height)
assert (res[0] - new_width) % 2 == 0
assert (res[1] - new_height) % 2 == 0
pad_width = (res[0] - new_width) //2
pad_height = (res[1] - new_height) //2
cam_resized = cam_resize(cam_orig, height=new_height, width=new_width)
cam_render = cam_crop(cam_resized, height=res[1], width=res[0], col=-pad_width, row=-pad_height)
# Assert that this is a "synthetic optimal" cam
assert cam_render['K'][0,0] == cam_render['K'][1,1]
assert cam_render['width']*0.5-0.5 == cam_render['K'][0,2]
assert cam_render['height']*0.5-0.5 == cam_render['K'][1,2]
### Loop over rotations and render ###
folder_name = basename(dirname(args.config_path))
image_folder = join(args.out_dir, "images", folder_name+"_"+args.resolution)
os.makedirs(image_folder, exist_ok=True)
num_images = args.fps*args.duration
assert num_images == int(num_images)
num_images = int(num_images)
angles = np.linspace(0, args.turns*360, num_images)
for idx, a in enumerate(tqdm(angles)):
st, ct = np.sin(np.deg2rad(a)), np.cos(np.deg2rad(a))
rot = np.array([
[ct, -st, 0],
[st, ct, 0],
[0, 0, 1]])
pose_obj = np.eye(4)
pose_obj[:3, :3] = rot
view = render_view(camCv2world, cam_render, pose_obj=pose_obj)
plt.imsave(join(image_folder, f"{idx:04d}.jpg"), view)
### Make video with ffmpeg ###
video_name = join(args.out_dir, folder_name+"_"+args.resolution+".mp4")
os.system(f"/usr/bin/ffmpeg -y -framerate {args.fps} -pattern_type glob -i '{image_folder}/*.jpg' -c:v libx264 -crf 17 -pix_fmt yuv420p {video_name}")