-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathprocess.py
817 lines (675 loc) · 27.9 KB
/
process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
#Copyright (c) 2021 Uber Technologies, Inc.
#
#Licensed under the Uber Non-Commercial License (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at the root directory of this project.
#
#See the License for the specific language governing permissions and
#limitations under the License.
import json
import glob
import os
from multiprocessing import Pool, Value
from graph import *
import argparse
import re
import pandas as pd
import sys
from datetime import datetime
import logging
import subprocess
import flamegraph
DATE_TIME = datetime.now().strftime("%d_%B_%Y_%H_%M_%S")
logging.basicConfig(format='%(asctime)s %(levelname)-8s %(message)s',
level=logging.INFO,
datefmt='%Y-%m-%d %H:%M:%S')
debug_on = logging.getLogger(__name__).isEnabledFor(logging.DEBUG)
JAEGER_UI_URL = "https://jaeger-ui.yourserver.com/trace"
def dirPathCheck(path):
if os.path.isdir(path):
return path
else:
raise argparse.ArgumentTypeError(
f"readable_dir:{path} is not a valid path")
argParser = argparse.ArgumentParser()
argParser.add_argument('-a',
'--operationName',
action='store',
help='operation name',
required=True,
type=str)
argParser.add_argument('-s',
'--serviceName',
action='store',
help='name of the service',
required=True,
type=str)
argParser.add_argument(
'--rootTrace',
dest='rootTrace',
action='store_true',
default=False,
required=False,
help=
"Should the service and operation be the root span of the trace (default:false)."
)
argParser.add_argument(
'--anonymize',
dest='anonymize',
action='store_true',
default=False,
required=False,
help="Should the service and operation names be anonymized (default:false)."
)
argParser.add_argument(
'-t',
'--traceDir',
action='store',
type=dirPathCheck,
help='path of the trace directory (mutually exclusive with --file)',
default=None)
argParser.add_argument(
'--file',
type=argparse.FileType('r'),
action='store',
help='input path of the trace file (mutually exclusivbe with --traceDir)',
default=None)
argParser.add_argument('-o',
'--outputDir',
required=True,
action='store',
help='directory where output will be produced',
type=dirPathCheck)
argParser.add_argument('--parallelism',
action='store',
help="number of concurrent python processes.",
default=1,
type=int)
argParser.add_argument('--topN',
action='store',
help='number of services to show in the summary',
default=5,
type=int)
argParser.add_argument('--numTrace',
action='store',
help='number of traces to show in the heatmap',
default=100,
type=int)
argParser.add_argument('--numOperation',
action='store',
help='number of operations to show in the heatmap',
default=100,
type=int)
args = argParser.parse_args()
operationName = args.operationName
serviceName = args.serviceName
tracesDir = args.traceDir
topN = args.topN
numOperation = args.numOperation
numTrace = args.numTrace
rootTrace = args.rootTrace
anonymize = args.anonymize
if args.file == None and args.traceDir == None:
print("One of --inpiut/--file should be set.")
sys.exit(-1)
if args.file != None and args.traceDir != None:
print("Only one of --inpiut/--file should be set.")
sys.exit(-1)
jaegerTraceFiles = []
if args.file != None:
jaegerTraceFiles = [args.file.name]
else:
jaegerTraceFiles = glob.glob(os.path.join(tracesDir, '*.json'))
htmlPrefixStr = '''
<html>
<head><title>CRISP: Critical Path Report</title>
<style>
.row_heading {
text-align: right;
}
/* Tooltip container */
.tooltip {
position: relative;
display: inline-block;
border-bottom: 1px dotted black; /* If you want dots under the hoverable text */
}
/* Tooltip text */
.tooltip .tooltiptext {
visibility: hidden;
width: max-content;
background-color: black;
color: #fff;
text-align: left;
padding: 5px 0;
border-radius: 6px;
/* Position the tooltip text - see examples below! */
position: absolute;
z-index: 1;
}
/* Show the tooltip text when you mouse over the tooltip container */
.tooltip:hover .tooltiptext {
visibility: visible;
}.table-sortable th {
cursor: pointer;
}
.table-sortable .th-sort-asc::after {
content: " \\003c";
}
.table-sortable .th-sort-desc::after {
content: " \\003e";
}
.table-sortable .th-sort-asc::after,
.table-sortable .th-sort-desc::after {
margin-left: 5px;
}
.table-sortable .th-sort-asc,
.table-sortable .th-sort-desc {
background: rgba(0, 0, 0, 0.1);
}
</style>
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.0.7/css/all.css">
</head>
<body>
'''
htmlGenerationTime = '''<h1>Critical path generated on %s </h1>''' % DATE_TIME
htmlSuffixStr = '''
<script type = "text/javascript">
/**
* Sorts a HTML table.
*
* @param {HTMLTableElement} table The table to sort
* @param {number} column The index of the column to sort
* @param {boolean} asc Determines if the sorting will be in ascending
*/
function sortTableByColumn(table, column, asc = true) {
const dirModifier = asc ? 1 : -1;
const tBody = table.tBodies[0];
const rows = Array.from(tBody.querySelectorAll("tr"));
// Sort each row
const sortedRows = rows.sort((a, b) => {
const aColText = Number(a.querySelector(`td:nth-child(${ column + 1 })`).textContent.trim())
const bColText = Number(b.querySelector(`td:nth-child(${ column + 1 })`).textContent.trim());
return aColText > bColText ? (1 * dirModifier) : (-1 * dirModifier);
});
// Remove all existing TRs from the table
while (tBody.firstChild) {
tBody.removeChild(tBody.firstChild);
}
// Re-add the newly sorted rows
tBody.append(...sortedRows);
// Remember how the column is currently sorted
table.querySelectorAll("th").forEach(th => th.classList.remove("th-sort-asc", "th-sort-desc"));
table.querySelector(`th:nth-child(${ column + 1})`).classList.toggle("th-sort-asc", asc);
table.querySelector(`th:nth-child(${ column + 1})`).classList.toggle("th-sort-desc", !asc);
}
document.querySelectorAll(".table-sortable th").forEach(headerCell => {
const headerIndex = Array.prototype.indexOf.call(headerCell.parentElement.children, headerCell);
// only sortable on the first 6 columns
if ((headerIndex > 1 && headerIndex) <= 4 || (headerIndex >= 8 && headerIndex <= 10)) {
headerCell.addEventListener("click", () => {
const tableElement = headerCell.parentElement.parentElement.parentElement;
const currentIsAscending = headerCell.classList.contains("th-sort-asc");
sortTableByColumn(tableElement, headerIndex, !currentIsAscending);
});
}
});
</script>
</body>
</html>
'''
def process(filename):
# process one Jaeger JSON trace file
with open(os.path.join(filename), 'r') as f:
data = json.load(f)
graph = Graph(data, serviceName, operationName, filename, rootTrace)
if graph.rootNode == None:
return Metrics({}, {}, {}, {}, {}, {}, {}, 0, 0, 0)
res = graph.findCriticalPath()
debug_on and logging.debug("critical path:" + str(res))
metrics = graph.getMetrics(res)
debug_on and logging.debug(metrics.opTimeExclusive)
debug_on and logging.debug(
"Test result = " +
str(graph.checkResults(metrics.opTimeExclusive)))
# artifically introduce the totalTime entry
metrics.opTimeExclusive['totalTime'] = graph.rootNode.duration
metrics.opTimeInclusive['totalTime'] = graph.rootNode.duration
return metrics
def mapReduce(numWorkers, jaegerTraceFiles):
# Build graph for each trace file and compute its critical path.
# Use python multiprocessing to split work on to numWorkers.
metrics = None
with Pool(numWorkers) as p:
metrics = p.map(process, jaegerTraceFiles)
return metrics
class SummaryResult:
"""
SummaryResult holds the following measurements as dictionaries
1. opTime: the flat profile with exclusive operation times.
2. callpathTime: the call-path profile with callpath times.
3. exampleMap: per callpath worst case example.
"""
def __init__(self, opTime, callpathTime, exampleMap):
self.opTime = opTime
self.callpathTime = callpathTime
self.exampleMap = exampleMap
def getTraceIdFromFilePath(traceFile):
# A trace file path will look like /foo/bar/73212187.json
# We need to return 73212187
return traceFile.split('/')[-1].split('.')[0]
def mergeCallChains(callMap, totalCallMap):
# Collect all call chains per opName
for opName in callMap:
if opName not in totalCallMap:
totalCallMap[opName] = set()
for name in callMap[opName]:
totalCallMap[opName].add(name)
def mergeCallpathTime(callMap, callPathMap, totalBreakdownTime):
# Collect all call paths and thier corresponding time
for opName, paths in callMap.items():
if opName not in totalBreakdownTime:
totalBreakdownTime[opName] = {}
for p in paths:
if p not in totalBreakdownTime[opName]:
totalBreakdownTime[opName][p] = []
totalBreakdownTime[opName][p].append(callPathMap[p])
def mergeExampleID(traceID, localExampleMap, exampleMap):
# Maintain the worst case example per call path.
for opName in localExampleMap:
if opName not in exampleMap:
exampleMap[opName] = (traceID, localExampleMap[opName][0],
localExampleMap[opName][1])
elif localExampleMap[opName][1] > exampleMap[opName][2]:
exampleMap[opName] = (traceID, localExampleMap[opName][0],
localExampleMap[opName][1])
def aggregateMetrics(metrics, jaegerTraceFiles):
# Compute aggregate metrics from individual metrics.
exclusive, inclusive = SummaryResult({}, {}, {}), SummaryResult({}, {}, {})
exclusive.opTime = {}
inclusive.opTime = {}
aggregateCallMap = {}
exclusive.callpathTime = {}
inclusive.callpathTime = {}
exclusive.exampleMap = {
} # stores the most time consuming traceID and spanID for each [serviceName] opName pair: (traceID, spanID, time)
inclusive.exampleMap = {}
for i in range(len(jaegerTraceFiles)):
traceID = getTraceIdFromFilePath(jaegerTraceFiles[i])
# remember per-trace info
exclusive.opTime[traceID] = metrics[i].opTimeExclusive
inclusive.opTime[traceID] = metrics[i].opTimeInclusive
mergeCallChains(callMap=metrics[i].callChain,
totalCallMap=aggregateCallMap)
mergeCallpathTime(callMap=metrics[i].callChain,
callPathMap=metrics[i].callpathTimeExlusive,
totalBreakdownTime=exclusive.callpathTime)
mergeCallpathTime(callMap=metrics[i].callChain,
callPathMap=metrics[i].callpathTimeInclusive,
totalBreakdownTime=inclusive.callpathTime)
mergeExampleID(traceID=traceID,
localExampleMap=metrics[i].exclusiveExampleMap,
exampleMap=exclusive.exampleMap)
mergeExampleID(traceID=traceID,
localExampleMap=metrics[i].inclusiveExampleMap,
exampleMap=inclusive.exampleMap)
return exclusive, inclusive, aggregateCallMap
def getOutputDir():
# Override if we have a file.
if args.file != None:
return os.path.dirname(args.file.name)
return tracesDir
class PVal:
def __init__(self, percentile, percentileStr):
self.percentile = percentile
self.percentileStr = percentileStr
self.pVal = {}
self.pPct = {}
def percentileWithPercentSign(self):
return self.percentileStr + '%'
def insertInDF(metric, opsStableOrder, traceIDsStableOrder):
df = pd.DataFrame(index=traceIDsStableOrder)
# updates df by inserting the operation times for each operation
for op in opsStableOrder:
opColumn = []
for trace in traceIDsStableOrder:
if op in metric.opTime[trace]:
opColumn.append(metric.opTime[trace][op])
else:
opColumn.append(0)
# insert the column
df.insert(len(df.columns), op, opColumn)
return df
def addPercentileColumns(df, percentiles):
# Here a data frame looks like this:
# traceId Op1 Op2 Op3 totalTime
# 687216 99 1 30 130
# 287382 89 2 20 111
# 79827 90 3 40 133
columnsToAdd = {}
for p in percentiles:
columnsToAdd[p.percentileStr] = []
columnsToAdd[p.percentileWithPercentSign()] = []
for p in percentiles:
denominator = df['totalTime'].quantile(p.percentile)
for i in df:
# Compute the quantile of non-zero values of operations
nonZeros = df[i].loc[df[i] != 0]
if len(nonZeros) == 0:
p.pVal[i] = 0
p.pPct[i] = 0
else:
p.pVal[i] = nonZeros.quantile(p.percentile)
p.pPct[i] = (p.pVal[i] /
denominator) if denominator != 0 else 0
columnsToAdd[p.percentileStr].append(p.pVal[i])
columnsToAdd[p.percentileWithPercentSign()].append(p.pPct[i])
df = df.transpose()
# Here a data frame looks like this:
# 687216 287382 79827
# op1 ? ? ?
# op2 ? ? ?
# op3 ? ? ?
for i, p in enumerate(percentiles):
df.insert(i, p.percentileStr, columnsToAdd[p.percentileStr])
for i, p in enumerate(percentiles):
df.insert(
len(percentiles) + i, p.percentileWithPercentSign(),
columnsToAdd[p.percentileWithPercentSign()])
# Here a data frame looks like this:
# p50 P95 P99 P50% P95% P99% 687216 287382 79827
# op1 ? ? ? ? ? ? ? ? ?
# op2 ? ? ? ? ? ? ? ? ?
# op3 ? ? ? ? ? ? ? ? ?
return df
def insertInclusivePercentileInfoDF(df, percentilesInclusive, inclusiveDF):
# Insert percentileStr columns.
for idx, p in enumerate(percentilesInclusive):
df.insert(idx, p.percentileStr, inclusiveDF[p.percentileStr])
# Insert percentileWithPercentSign columns.
for idx, p in enumerate(percentilesInclusive):
df.insert(
len(percentilesInclusive) + idx, p.percentileWithPercentSign(),
inclusiveDF[p.percentileWithPercentSign()])
return df
def insertOccurenceCol(df, jaegerTraceFiles, nonZeros):
# Insert one column that counts the number of times the operation is seen on the critical path
occurenceColHeader = 'occurence (%s)' % len(jaegerTraceFiles)
df.insert(0, occurenceColHeader, "")
for i in range(len(df)):
df.at[df.index[i],
'occurence (%s)' % len(jaegerTraceFiles)] = int(nonZeros[i])
return df, occurenceColHeader
def reindexDescending(df, exclusive, prefixColumns, traceIDIndex):
# Sort the rows descending total time per op.
opSums = df[traceIDIndex].sum(axis=1).sort_values(ascending=False)
df = df.reindex(opSums.index.tolist())
# traceIds orders by total execution time.
traceIDSorted = sorted(traceIDIndex,
key=lambda x: exclusive.opTime[x]['totalTime']
if 'totalTime' in exclusive.opTime[x] else 0,
reverse=True)
# Sort the columns descending total time per trace.
return df.reindex(columns=prefixColumns + traceIDSorted)
def makeClickable(url, name):
return '<a href="{}" rel="noopener noreferrer" target="_blank">{}</a>'.format(
url, name)
def addHyperLinkToTrace(df, tracespanIDmap):
# Make each trace column header navigatable to Jaeger UI
hyperLinkHT = {}
for k, v in tracespanIDmap.items():
hyperLinkHT[k] = makeClickable(JAEGER_UI_URL + "%s?uiFind=%s" % (k, v),
'#')
df.rename(columns=hyperLinkHT, inplace=True)
return df
def renameSortableIcon(df, columns):
# Use fas fa-sort script to make columns sortable.
sortableRenameHT = {}
for col in columns:
sortableRenameHT[col] = col + ' <i class="fas fa-sort"></i>'
df.rename(columns=sortableRenameHT, inplace=True)
return df
def setCellFormating(df, percentiles, occurenceColHeader):
precisionHT = {}
for i in df.columns.values:
# All columns except percentiles with % sign will be in scientific.
precisionHT[i] = "{:.2e}"
for p in percentiles:
# Columns with % sign.
precisionHT[p.percentileWithPercentSign()] = "{:.2%}"
# occurence column will be in decimal
precisionHT[occurenceColHeader] = "{:5d}"
return precisionHT
def cssNameHandle(str):
# Given the call chain, change it into css format with indentation.
lst = str.split('->')
res = ""
for i in range(len(lst)):
for j in range(i):
res += '   '
res += lst[i] + '</br> '
return res
def getSummaryText(pval, pctMap, valMap, totalBreakdownTime):
summary = ''
summary += '<h1>Top %d operations contributing to %s of [%s] %s:</h1>' % (
topN, pval, serviceName, operationName)
res = sorted(pctMap.items(), key=lambda x: x[1], reverse=True)
for i in res:
if i[0] == 'totalTime':
res.remove(i)
break
for idx in range(0, min(topN, len(res))):
summary += '<h2>%s. %s -> %s Value: %s, %s percentage: %s, call chains are below:</h2>' % (
idx + 1, res[idx][0], pval, '{:.2e}'.format(valMap[res[idx][0]]),
pval, '{:.2%}'.format(pctMap[res[idx][0]]))
cc = totalBreakdownTime[res[idx][0]]
sumCC = 0
sortedCC = sorted(cc.items(), key=lambda x: sum(x[1]), reverse=True)
for i in sortedCC:
for j in i[1]:
sumCC += j
for i in range(len(sortedCC)):
summary += cssNameHandle(sortedCC[i][0] + '</br>' +
'Contributing: {:.2%}'.format(
sum(sortedCC[i][1]) /
sumCC if sumCC != 0 else 1.0))
summary += '</br>'
return summary
def getTopNCCTs(sortedContexts, sumTime, n, exampleMap):
res = ''
for i in range(min(len(sortedContexts), n)):
res += cssNameHandle(
sortedContexts[i][0] + '</br>' + 'Contributing: {:.2%}'.format(
sum(sortedContexts[i][1]) /
sumTime if sumTime != 0 else 0)) + makeClickable(
JAEGER_UI_URL + "/%s?uiFind=%s" %
(exampleMap[sortedContexts[i][0]][0],
exampleMap[sortedContexts[i][0]][1]),
"Example") + '</br>' + '</br>'
return res
def sum2DCCT(cct):
total = 0
for i in cct:
for j in i[1]:
total += j
return total
def addToolTip(df, exclusive, inclusive, ignoreSet):
# Add tooltip and example url to each opName.
renameRowHT = {}
for i, idx in enumerate(df.index[:]): # copy
if idx in ignoreSet:
continue
res = ""
cc = exclusive.callpathTime[idx]
sortedCC = sorted(cc.items(), key=lambda x: sum(x[1]), reverse=True)
ccInc = inclusive.callpathTime[idx]
sortedCCInc = sorted(ccInc.items(),
key=lambda x: sum(x[1]),
reverse=True)
sumCC = sum2DCCT(sortedCC)
sumCCInc = sum2DCCT(sortedCCInc)
res += "Exclusive:</br>"
res += getTopNCCTs(sortedCC, sumCC, 5, exclusive.exampleMap)
res += "Inclusive:</br>"
res += getTopNCCTs(sortedCCInc, sumCCInc, 5, inclusive.exampleMap)
renameRowHT[df.index[
i]] = '<div class="tooltip">%s <span class="tooltiptext">%s</span> </div>' % (
df.index[i], res)
df.rename(index=renameRowHT, inplace=True)
return df
def getGradientFormatFromDataframe(df, precisionHT, firstSorableCoulmn,
lastSortableColumns):
return (df.style.background_gradient(
axis=0,
cmap='BuPu',
subset=(df.index.values[firstSorableCoulmn:],
df.columns.values[lastSortableColumns:])).set_table_attributes(
'class="table-sortable"').set_properties(
**{
'text-align': 'right'
}).format(precisionHT).render())
def heatmapAndSummary(exclusive, inclusive, aggregateCallMap, traceIDIndex,
traceToRootspanMap):
# Create a dataframe of traces and operations.
# Insert percentile columns.
# Compute a heatmap.
# return HTML form of the heatmap as a table and textual summary.
allOps = [k for k in aggregateCallMap.keys()]
allOps.append('totalTime')
opsStableOrder = sorted(allOps)
traceIDsStableOrder = sorted(traceIDIndex)
exclusiveDF = insertInDF(exclusive, opsStableOrder, traceIDsStableOrder)
inclusiveDF = insertInDF(inclusive, opsStableOrder, traceIDsStableOrder)
# Here a data frame looks like this:
# traceId Op1 Op2 Op3
# 687216 ? ? ?
# 287382 ? ? ?
# 79827 ? ? ?
# Count the non-zeros in each column. These are the number of times an operation appears on the critical path.
nonZeroOpCounts = exclusiveDF.astype(bool).sum(axis=0)
# Now inject the percentile columns.
percentilesExclusive = (PVal(.5, 'P50(E)'), PVal(.95, 'P95(E)'),
PVal(.99, 'P99(E)'))
exclusiveDF = addPercentileColumns(exclusiveDF, percentilesExclusive)
percentilesInclusive = (PVal(.5, 'P50(I)'), PVal(.95, 'P95(I)'),
PVal(.99, 'P99(I)'))
inclusiveDF = addPercentileColumns(inclusiveDF, percentilesInclusive)
# Insert inclusive percentiles into exclusiveDF and call it df
df = insertInclusivePercentileInfoDF(exclusiveDF, percentilesInclusive,
inclusiveDF)
# Insert the occurences column as the first column.
df, occurenceColHeader = insertOccurenceCol(df, jaegerTraceFiles,
nonZeroOpCounts)
# 1 for occurence column, 2*(len(percentilesExclusive) + len(percentilesInclusive) for the percentile columns
numColsToRetains = 1 + 2 * (len(percentilesExclusive) +
len(percentilesInclusive))
unmodifiedPrefix = df.columns.values.tolist()[:numColsToRetains]
# Order the df in descending order of total trace time and total operation time.
df = reindexDescending(df, exclusive, unmodifiedPrefix, traceIDIndex)
# Truncate df to max of numOperation rows and numColsToRetains + numTrace columns.
df = df.iloc[:numOperation, :numColsToRetains + numTrace]
# Get df into Json format
criticalPathJSONStr = df.to_json()
# Add hyperlinks to the column heads of each trace.
df = addHyperLinkToTrace(df, traceToRootspanMap)
# Make percentile columns and occurence column sortable.
df = renameSortableIcon(
df,
[x.percentileStr for x in percentilesInclusive + percentilesExclusive])
# Make each cell in scientific value
precisionHT = setCellFormating(df,
percentilesExclusive + percentilesInclusive,
occurenceColHeader)
# Add tool tip to each row header (operation) to show the top calling contexts.
df = addToolTip(df, exclusive, inclusive, ignoreSet={'totalTime'})
firstSorableCoulmn = 1
lastSortableColumns = firstSorableCoulmn + 2 * (len(percentilesExclusive) +
len(percentilesInclusive))
# Obtain the textual summary.
summary = ''
for p in percentilesExclusive:
summary += getSummaryText(p.percentileStr, p.pPct, p.pVal,
exclusive.callpathTime)
# Color the heapmap with the gradient.
heatmap = getGradientFormatFromDataframe(df, precisionHT,
firstSorableCoulmn,
numColsToRetains)
return heatmap, summary, criticalPathJSONStr
def replaceNonAlphaNumericWithUnderscore(str):
return re.sub('[^a-zA-Z0-9_]+', '_', str)
saniMap = {'totalTime': 'totalTime'}
saniCtr = 0
def sanitized(op):
global saniCtr
global saniMap
ret = ''
pieces = op.split('->')
for piece in pieces:
if ret != '':
ret += '->'
if piece in saniMap:
ret += saniMap[piece]
else:
saniCtr += 1
ret += 'Service::Operation' + str(saniCtr)
saniMap[piece] = 'Service::Operation' + str(saniCtr)
return ret
def sanitizeNames(metric):
for r in metric:
for field in [
r.opTimeExclusive, r.callpathTimeExlusive,
r.exclusiveExampleMap, r.opTimeInclusive,
r.callpathTimeInclusive, r.inclusiveExampleMap
]:
for k, v in field.copy().items():
del field[k]
field[sanitized(k)] = v
for k, vals in r.callChain.copy().items():
del r.callChain[k]
sk = sanitized(k)
r.callChain[sk] = set()
for v in vals:
r.callChain[sk].add(sanitized(v))
if __name__ == '__main__':
logging.info("Starting mapReduce")
metrics = mapReduce(args.parallelism, jaegerTraceFiles)
maxNodes = 0
totalNodes = 0
maxDepth = 0
for i in metrics:
totalNodes = totalNodes + i.numNodes
maxNodes = i.numNodes if i.numNodes > maxNodes else maxNodes
maxDepth = i.depth if i.depth > maxDepth else maxDepth
logging.info(f"maxNodes = {maxNodes}, totalNodes={totalNodes}, maxDepth={maxDepth}")
if anonymize:
sanitizeNames(metrics)
logging.info("Starting aggregateMetrics")
exclusive, inclusive, aggregateCallMap = aggregateMetrics(
metrics, jaegerTraceFiles)
traceIDIndex = [
os.path.splitext(os.path.basename(i))[0] for i in jaegerTraceFiles
]
# create a map of from traceID to the corresponding spanID.
traceToRootspanMap = {}
for i in range(len(traceIDIndex)):
traceID = traceIDIndex[i]
spanID = metrics[i].rootSpanID
traceToRootspanMap[traceID] = spanID
logging.info("Starting flameGraph")
flameGraphPctFilePair, differentialFlameGraphFiles = flamegraph.flameGraph(
metrics, getOutputDir())
logging.info("Starting heatmapAndSummary")
heatMap, summary, criticalPathJSONStr = heatmapAndSummary(exclusive, inclusive,
aggregateCallMap, traceIDIndex,
traceToRootspanMap)
criticalPathHTMLFile = os.path.join(args.outputDir, 'criticalPaths.html')
logging.info("[%s]%s critical path file %s", args.serviceName,
args.operationName, criticalPathHTMLFile)
with open(criticalPathHTMLFile, 'w') as f:
f.write(htmlPrefixStr + heatMap)
f.write(htmlGenerationTime)
for pval, file in flameGraphPctFilePair:
src = os.path.basename(file)
f.write('<div> <h2>%s flame graph. </h2> <img src=%s></div>' %
(pval, src))
f.write(summary)
f.write(htmlSuffixStr)