-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
53 lines (38 loc) · 2.04 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import os
from typing import Tuple, Any, Callable, List, Optional, Union
import torch
import pandas as pd
from sklearn.model_selection import train_test_split
from src.transform import TransformSelector
from src.dataset import CustomDataset
from src.trainer import DataLoader, get_trainer
from config import config
device = config.DEVICE if torch.cuda.is_available() else 'cpu'
model_name = config.MODEL_NAME
if not config.NEW_DATASET: # 원본 데이터셋 사용할 경우
traindata_dir = config.TRAIN_DATA_DIR
valdata_dir = traindata_dir
traindata_info_file = os.path.join(traindata_dir, '../train.csv')
traindata_info_file = os.path.abspath(traindata_info_file)
train_info = pd.read_csv(traindata_info_file)
train_df, val_df = train_test_split(train_info, test_size=1-config.TRAIN_RATIO, stratify=train_info['target'], random_state=20)
else: # 새로운 데이터셋 사용할 경우
traindata_dir = "./data/trainDelFlip_objectsplit_train_upWithcanny"
valdata_dir = "./data/trainDelFlip_objectsplit_val"
train_df = pd.read_csv("./data/trainDelFlip_objectsplit_train_upWithcanny.csv")
val_df = pd.read_csv("./data/trainDelFlip_objectsplit_val.csv")
save_result_path = config.CHECKPOINT_DIR
if not os.path.exists(save_result_path):
os.makedirs(save_result_path)
# 학습에 사용할 Transform을 선언.
transform_selector = TransformSelector(transform_type = 'sketch_albumentations')
train_transform = transform_selector.get_transform(is_train=True)
val_transform = transform_selector.get_transform(is_train=False)
# 학습에 사용할 Dataset을 선언.
train_dataset = CustomDataset(root_dir=traindata_dir, info_df=train_df, transform=train_transform)
val_dataset = CustomDataset(root_dir=valdata_dir, info_df=val_df, transform=val_transform)
# 학습에 사용할 DataLoader를 선언.
train_loader = DataLoader(train_dataset, batch_size=config.BATCH_SIZE, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=config.BATCH_SIZE, shuffle=False)
trainer = get_trainer(train_loader, val_loader)
trainer.train()