-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
143 lines (123 loc) · 4.33 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import numpy as np
import cv2
import tensorflow as tf
from tensorflow import keras
img=cv2.imread("Sample Images/sample1.jpeg")
img_area=img.shape[0]*img.shape[1]
gray_img=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
threshold=cv2.adaptiveThreshold(gray_img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 199, 15)
kernel=np.ones((3,2),'uint8')
thresholdn=cv2.erode(threshold,kernel,iterations=4)
contours,_=cv2.findContours(thresholdn,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
j=0
for cnt in contours:
if cv2.contourArea(cnt)>img_area/100 and cv2.contourArea(cnt)<0.95*img_area :
rect = cv2.minAreaRect(cnt)
box=cv2.boxPoints(rect)
box=np.int0(box)
mult = 1
#print(rect)
W = rect[1][0]
H = rect[1][1]
Xs = [i[0] for i in box]
Ys = [i[1] for i in box]
x1 = min(Xs)
x2 = max(Xs)
y1 = min(Ys)
y2 = max(Ys)
rotated = False
angle = rect[2]
if angle < -45:
angle+=90
rotated = True
center = (int((x1+x2)/2), int((y1+y2)/2))
size = (int(mult*(x2-x1)),int(mult*(y2-y1)))
M = cv2.getRotationMatrix2D((size[0]/2, size[1]/2), angle, 1.0)
cropped = cv2.getRectSubPix(thresholdn, size, center)
cropped = cv2.warpAffine(cropped, M, size)
croppedW = W if not rotated else H
croppedH = H if not rotated else W
if(np.sum(cv2.bitwise_not(cropped))>j):
j=np.sum(cv2.bitwise_not(cropped))
croppedRotated = cv2.getRectSubPix(cropped, (int(croppedW*mult), int(croppedH*mult)), (size[0]/2, size[1]/2))
if((croppedRotated.shape[0]-croppedRotated.shape[1])>10):
croppedRotated = cv2.rotate(croppedRotated, cv2.cv2.ROTATE_90_CLOCKWISE)
img=croppedRotated
edges = cv2.Canny(img, 100, 100)
edges=cv2.bitwise_not(edges)
minLineLength = (edges.shape[1]*8)//10
a=(edges.shape[0]*2)//10
b=(edges.shape[0]*8)//10
maxLineGap = 70
lines = cv2.HoughLinesP(edges,1,np.pi/180,265,minLineLength,maxLineGap)
if lines is None:
lines=[]
up=0
down=0
for line in lines:
for x1,y1,x2,y2 in line:
if((y1<a)or(y2<a)):
up+=np.sum(croppedRotated[(y1+y2)//2][min(x1,x2):max(x1,x2)])
if (y2>b)or(y1>b):
down+=np.sum(croppedRotated[(y1+y2)//2][min(x1,x2):max(x1,x2)])
if(up>down):
orn=0
else:
orn=1
for line in lines:
for x1,y1,x2,y2 in line:
if(((y1<a)or(y2<a))and(orn==1)):
cv2.line(croppedRotated,(x1,y1),(x2,y2),(255,255,255),7)
if (((y2>b)or(y1>b))and(orn==0)):
cv2.line(croppedRotated,(x1,y1),(x2,y2),(255,255,255),7)
if(orn==0):
croppedRotated = cv2.rotate(croppedRotated, cv2.ROTATE_180)
dest_not1 = cv2.bitwise_not(croppedRotated, mask = None)
kernel=np.ones((3,2),'uint8')
dest_not1=cv2.erode(dest_not1,kernel,iterations=2)
img=dest_not1
img_area=img.shape[0]*img.shape[1]
contours,_=cv2.findContours(img,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
image_letter=[]
rect_co=[]
for cnt in contours:
if cv2.contourArea(cnt)>img_area/100 and cv2.contourArea(cnt)<0.95*img_area :
x,y,w,h = cv2.boundingRect(cnt)
rect_co.append([x,y,w,h])
rect_co=sorted(rect_co, key = lambda x: x[0])
final_co=[]
for i in range(len(rect_co)):
x,y,w,h=rect_co[i]
if(len(final_co)>0):
if((final_co[-1][0]<x)and((final_co[-1][0]+final_co[-1][2])>(x+w))):
pass
else:
image_letter.append(img[y:y+h+1,x:x+w+1])
final_co.append(rect_co[i])
else:
image_letter.append(img[y:y+h+1,x:x+w+1])
final_co.append(rect_co[i])
#padding
def pad(image):
image=cv2.copyMakeBorder(image,20,20,20,20, cv2.BORDER_CONSTANT, None,0)
image = cv2.resize(image, (36,36),interpolation = cv2.INTER_NEAREST)
return image
for i in range(len(image_letter)):
j=pad(image_letter[i])
image_letter[i]=j
image_letter=np.array(image_letter)
image_letter=np.reshape(image_letter,(-1,36,36,1))
model = keras.models.load_model("Model.h5")
pred=model.predict(image_letter)
pred=np.argmax(pred,axis = 1)
mapping={
1:"क", 2:"ख", 3:"घ",
4:"च", 5:"ज", 6:"झ", 23:"ञ",
7:"ट", 8:"ठ", 9:"ड", 24:"ढ",
10:"त", 11:"द", 12:"न",
13:"प", 14:"ब", 15:"म",
16:"य", 17:"र", 18:"ल", 19:"व", 25:"ष",
20:"स", 21:"ह", 22:"त्र", 26:"ज्ञ",
}
for i in pred:
print(mapping[i+1],end='')