forked from JoeIbrahim/Yibrahim-IsostasyFTB-Model
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathKC2.py
330 lines (230 loc) · 14.2 KB
/
KC2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
""" This is the script used to run experiment KC2 in the publication
'The role of Isostasy in the evolution and architecture of fold and
thrust belts
By Youseph Ibrahim
This was run using UWGeodynamics V2.9"""
import UWGeodynamics as GEO
import numpy as np
u = GEO.UnitRegistry
half_rate = 10 * u.millimeter / u.year
model_length = 44.8e3 * u.meter
surfaceTemp = 273.15 * u.degK
baseModelTemp = 1603.15 * u.degK
bodyforce = 2700 * u.kilogram / u.metre**3 * 9.81 * u.meter / u.second**2
rigidbasedensity = 4000. * u.kilogram / u.metre**3
velocity = 1. * u.centimeter / u.year
KL = model_length
Kt = KL / half_rate
KM = bodyforce * KL**2 * Kt**2
KT = (baseModelTemp - surfaceTemp)
GEO.scaling_coefficients["[length]"] = KL
GEO.scaling_coefficients["[time]"] = Kt
GEO.scaling_coefficients["[mass]"]= KM
GEO.scaling_coefficients["[temperature]"] = KT
Model = GEO.Model(elementRes=(800,200),
minCoord=(0. * u.kilometer, -12. * u.kilometer),
maxCoord=(64 * u.kilometer, 4. * u.kilometer),
gravity=(0.0, -9.81 * u.meter / u.second**2))
Model.outputDir="1cm_4000s3_O"
Model.diffusivity = 9e-7 * u.metre**2 / u.second
Model.capacity = 1000. * u.joule / (u.kelvin * u.kilogram)
air = Model.add_material(name="Air", shape=GEO.shapes.Layer(top=Model.top, bottom=0 * u.kilometer))
air.density = 1. * u.kilogram / u.metre**3
air.diffusivity = 1e-6 * u.metre**2 / u.second
air.capacity = 1000. * u.joule / (u.kelvin * u.kilogram)
Loose_Sediment = Model.add_material(name="Loose_Sediment", shape=GEO.shapes.Layer2D(top=0. * u.kilometer, bottom=-0.2 * u.kilometer))
Loose_Sediment.radiogenicHeatProd = 7.67e-7 * u.watt / u.meter**3
Loose_Sediment.density = 2000. * u.kilogram / u.metre**3
Strong_1 = Model.add_material(name="Strong_1", shape=GEO.shapes.Layer2D(top=-0.2 * u.kilometer, bottom=-0.7 * u.kilometer))
Strong_1.radiogenicHeatProd = 7.67e-7 * u.watt / u.meter**3
Strong_1.density = 2600. * u.kilogram / u.metre**3
Weak_1 = Model.add_material(name="Weak_1", shape=GEO.shapes.Layer2D(top=Strong_1.bottom, bottom=-1.2 * u.kilometer))
Weak_1.radiogenicHeatProd = 7.67e-7 * u.watt / u.meter**3
Weak_1.density = 2200. * u.kilogram / u.metre**3
Strong_2 = Model.add_material(name="Strong_2", shape=GEO.shapes.Layer2D(top=Weak_1.bottom, bottom=-1.7 * u.kilometer))
Strong_2.radiogenicHeatProd = 7.67e-7 * u.watt / u.meter**3
Strong_2.density = 2600. * u.kilogram / u.metre**3
Weak_2 = Model.add_material(name="Weak_2", shape=GEO.shapes.Layer2D(top=Strong_2.bottom, bottom=-2.2 * u.kilometer))
Weak_2.radiogenicHeatProd = 7.67e-7 * u.watt / u.meter**3
Weak_2.density = 2200. * u.kilogram / u.metre**3
Strong_3 = Model.add_material(name="Strong_3", shape=GEO.shapes.Layer2D(top=Weak_2.bottom, bottom=-2.7 * u.kilometer))
Strong_3.radiogenicHeatProd = 7.67e-7 * u.watt / u.meter**3
Strong_3.density = 2600. * u.kilogram / u.metre**3
Weak_3 = Model.add_material(name="Weak_3", shape=GEO.shapes.Layer2D(top=Strong_3.bottom, bottom=-3.2 * u.kilometer))
Weak_3.radiogenicHeatProd = 7.67e-7 * u.watt / u.meter**3
Weak_3.density = 2300. * u.kilogram / u.metre**3
Strong_4 = Model.add_material(name="Strong_3", shape=GEO.shapes.Layer2D(top=Weak_3.bottom, bottom=-3.7 * u.kilometer))
Strong_4.radiogenicHeatProd = 7.67e-7 * u.watt / u.meter**3
Strong_4.density = 2600. * u.kilogram / u.metre**3
Weak_4 = Model.add_material(name="Weak_3", shape=GEO.shapes.Layer2D(top=Strong_4.bottom, bottom=-4.2 * u.kilometer))
Weak_4.radiogenicHeatProd = 7.67e-7 * u.watt / u.meter**3
Weak_4.density = 2300. * u.kilogram / u.metre**3
Basement = Model.add_material(name="Continental Crust", shape=GEO.shapes.Layer2D(top=Weak_4.bottom, bottom=-7.5 * u.kilometer))
Basement.radiogenicHeatProd = 7.67e-7 * u.watt / u.meter**3
Basement.density = 2720. * u.kilogram / u.metre**3
Beam = Model.add_material(name="Continental Crust", shape=GEO.shapes.Layer2D(top=Basement.bottom, bottom=Model.bottom))
Beam.radiogenicHeatProd = 7.67e-7 * u.watt / u.meter**3
Beam.density = 4000. * u.kilogram / u.metre**3
rh = GEO.ViscousCreepRegistry()
Model.minViscosity = 5e18 * u.pascal * u.second
Model.maxViscosity = 5e23 * u.pascal * u.second
air.viscosity = 5e18 * u.pascal * u.second
Loose_Sediment.viscosity = 1e20 * u.pascal * u.second
Strong_1.viscosity = 1e22 * u.pascal * u.second
Strong_2.viscosity = 1e22 * u.pascal * u.second
Strong_3.viscosity = 1e22 * u.pascal * u.second
Strong_4.viscosity = 1e22 * u.pascal * u.second
Weak_1.viscosity = 5e20 * u.pascal * u.second
Weak_2.viscosity = 5e20 * u.pascal * u.second
Weak_3.viscosity = 5e20 * u.pascal * u.second
Weak_4.viscosity = 5e20 * u.pascal * u.second
Basement.viscosity = 1e23 * u.pascal * u.second
Beam.viscosity = 1e23 * u.pascal * u.second
Loose_Sediment.plasticity = GEO.DruckerPrager(name="Strong_1",
cohesion=0. * u.megapascal,
cohesionAfterSoftening=0.0 * u.megapascal,
frictionCoefficient=0.01,
frictionAfterSoftening=0.001,
epsilon1=0., epsilon2=0.25)
Strong_1.plasticity = GEO.DruckerPrager(name="Strong_1",
cohesion=5. * u.megapascal,
cohesionAfterSoftening=0.5 * u.megapascal,
frictionCoefficient=0.1,
frictionAfterSoftening=0.01,
epsilon1=0., epsilon2=0.25)
Weak_1.plasticity = GEO.DruckerPrager(name="Weak_1",
cohesion=5. * u.megapascal,
cohesionAfterSoftening=0.5 * u.megapascal,
frictionCoefficient=0.1,
frictionAfterSoftening=0.01,
epsilon1=0., epsilon2=0.25)
Strong_2.plasticity = GEO.DruckerPrager(name="Strong_2",
cohesion=5. * u.megapascal,
cohesionAfterSoftening=0.5 * u.megapascal,
frictionCoefficient=0.1,
frictionAfterSoftening=0.01,
epsilon1=0., epsilon2=0.25)
Weak_2.plasticity = GEO.DruckerPrager(name="Weak_2",
cohesion=5. * u.megapascal,
cohesionAfterSoftening=0.5 * u.megapascal,
frictionCoefficient=0.1,
frictionAfterSoftening=0.01,
epsilon1=0., epsilon2=0.25)
Strong_3.plasticity = GEO.DruckerPrager(name="Strong_3",
cohesion=5. * u.megapascal,
cohesionAfterSoftening=0.5 * u.megapascal,
frictionCoefficient=0.1,
frictionAfterSoftening=0.01,
epsilon1=0., epsilon2=0.25)
Weak_3.plasticity = GEO.DruckerPrager(name="Weak_3",
cohesion=5. * u.megapascal,
cohesionAfterSoftening=0.5 * u.megapascal,
frictionCoefficient=0.1,
frictionAfterSoftening=0.01,
epsilon1=0., epsilon2=0.25)
Strong_4.plasticity = GEO.DruckerPrager(name="Strong_3",
cohesion=5. * u.megapascal,
cohesionAfterSoftening=0.5 * u.megapascal,
frictionCoefficient=0.1,
frictionAfterSoftening=0.01,
epsilon1=0., epsilon2=0.25)
Weak_4.plasticity = GEO.DruckerPrager(name="Weak_3",
cohesion=5. * u.megapascal,
cohesionAfterSoftening=0.5 * u.megapascal,
frictionCoefficient=0.1,
frictionAfterSoftening=0.01,
epsilon1=0., epsilon2=0.25)
Basement.plasticity = GEO.DruckerPrager(name="Basement",
cohesion=40. * u.megapascal,
cohesionAfterSoftening=4. * u.megapascal,
frictionCoefficient=0.6,
frictionAfterSoftening=0.06,
epsilon1=0.1, epsilon2=0.25)
# eta = 1e23 * u.pascal * u.second # Viscosity
# mu = 2e9 * u.pascal # Shear Modulus
# alpha = eta / mu # Maxwell relaxation time
# dt_e = 20e3 * u.year # Load relaxation time
# eta_eff = ( eta * dt_e ) / (alpha + dt_e) # effective viscosity
# yieldStrength = 12e6 * (u.kilogram * u.meter**-1 * u.second**-2)
# minVisc = 1e19 * (u.kilogram * u.meter**-1 * u.second**-2) * u.second
# maxVisc = 1e24 * (u.kilogram * u.meter**-1 * u.second**-2) * u.second
# density = 2700 * u.kilogram / u.metre**3
# gravity = 9.81 * u.metre / u.second**2
# shearVelocity = 0.5 * u.centimetre / u.year
# print('Maxwell relaxation time = ', alpha.to(u.years))
# print("Observation time = ", dt_e.to(u.year), dt_e)
# print("effective viscosity = ", eta_eff.to(u.pascal * u.second))
Strong_1.elasticity = GEO.Elasticity(shear_modulus=2e9 * u.pascal,
observation_time=20000 * u.year)
Weak_1.elasticity = GEO.Elasticity(shear_modulus=2e9 * u.pascal,
observation_time=20000 * u.year)
Strong_2.elasticity = GEO.Elasticity(shear_modulus=2e9 * u.pascal,
observation_time=20000 * u.year)
Weak_2.elasticity = GEO.Elasticity(shear_modulus=2e9 * u.pascal,
observation_time=20000 * u.year)
Strong_3.elasticity = GEO.Elasticity(shear_modulus=2e9 * u.pascal,
observation_time=20000 * u.year)
Weak_3.elasticity = GEO.Elasticity(shear_modulus=2e9 * u.pascal,
observation_time=20000 * u.year)
Strong_4.elasticity = GEO.Elasticity(shear_modulus=2e9 * u.pascal,
observation_time=20000 * u.year)
Weak_4.elasticity = GEO.Elasticity(shear_modulus=2e9 * u.pascal,
observation_time=20000 * u.year)
Model.init_model()
Model.set_temperatureBCs(top=293.15 * u.degK, materials=[(air, 293.15*u.degK)])
Model.set_heatFlowBCs(bottom=(-0.044 * u.watt / u.metre**2, Beam))
import underworld.function as fn
conditions = [(Model.y <= GEO.nd(Beam.top), GEO.nd(-velocity)),
(Model.y > GEO.nd(Beam.top),
GEO.nd(0. * u.centimeter / u.year)),
(True, GEO.nd(0. * u.centimeter / u.year))]
fn_condition = fn.branching.conditional(conditions)
Model.set_velocityBCs(left=[fn_condition, None],
right=[-velocity, 0.],
top=[None, None],
bottom=GEO.LecodeIsostasy(reference_mat=Beam, average=False))
Model.init_model()
x = np.linspace(GEO.nd(Model.minCoord[0]), GEO.nd(Model.maxCoord[0]), 1000)
y = 0.
surface_tracers = Model.add_passive_tracers(name="Surface", vertices=[x,y])
moho_tracers = Model.add_passive_tracers(name="Moho", vertices=[x,y-GEO.nd(24.*u.kilometer)])
npoints = int(Model.maxCoord[0].to(u.kilometer).magnitude) # This is the number of points used to define the surface
x_surface = np.linspace(GEO.nd(Model.minCoord[0]), GEO.nd(Model.maxCoord[0]), npoints)
y_surface = -0.01 * u.kilometer
surface_tracers_no_erosion = Model.add_passive_tracers(name="Surface-NoErosion", vertices=[x_surface,y_surface], zOnly=True)
surface_tracers_erosion = Model.add_passive_tracers(name="Surface-Erosion", vertices=[x_surface,y_surface], zOnly=True)
def Hillslope_diffusion_basic():
from scipy.interpolate import interp1d
from scipy.interpolate import InterpolatedUnivariateSpline
x = GEO.dimensionalise(surface_tracers_erosion.data[:,0], u.meter).magnitude
z = GEO.dimensionalise(surface_tracers_erosion.data[:,1], u.meter).magnitude
dx = (Model.maxCoord[0].to(u.meter).magnitude)/npoints
total_time = (GEO.dimensionalise(Model._dt, u.year)).magnitude
D = ((1.0e3 * u.meter**2 / u.year).to(u.meter**2 / u.year)).magnitude
dt = min((0.2 * dx * dx / D), total_time)
nts = int(round(total_time/dt))
print('total time:', total_time, 'timestep:', dt, 'No. of its:', nts)
z_orig = z.copy()
for i in range(nts):
qs = -D * np.diff(z)/dx
dzdt = -np.diff(qs)/dx
z[1:-1] += dzdt*dt
x_nd = GEO.nd(x*u.meter)
z_nd = GEO.nd(z*u.meter)
if x_nd.shape[0] > 0.:
f1 = interp1d(x_nd, z_nd, fill_value='extrapolate', kind='nearest')
y_eroded_surface = f1(x_nd)
y_eroded_surface[x_nd < GEO.nd(Update_material_LHS_Length*u.kilometer )] = 0.
surface_tracers_erosion.data[:,1] = y_eroded_surface
Model.materialField.data[(Model.swarm.data[:,1] > f1(Model.swarm.data[:,0])) & (Model.materialField.data[:,0] != air.index)] = air.index
Model.materialField.data[(Model.swarm.data[:,1] < f1(Model.swarm.data[:,0])) & (Model.materialField.data[:,0] == air.index)] = Sediment.index
x_c, y_c = GEO.circles_grid(radius=0.1*u.kilometer,
minCoord=[Model.minCoord[0], Basement.bottom],
maxCoord=[Model.maxCoord[0], 0.*u.kilometer])
FSE_Crust = Model.add_passive_tracers(name="FSE_Crust", vertices=[x_c, y_c])
Model.init_model()
GEO.rcParams["default.outputs"].append("projStrainTensor")
GEO.rcParams["default.outputs"].append("projStressTensor")
Model.solver.set_inner_method("mumps")
Model.solver.set_penalty(1e6)
Model.run_for( 2200000.* u.year, restartStep=-1, restartDir="1cm_4000s3_O", checkpoint_interval=5000. * u.year)