This repository has been archived by the owner on Jun 16, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfastFTranformFiltering.py
122 lines (101 loc) · 4.03 KB
/
fastFTranformFiltering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import cv2
import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
img = cv.imread('unDenoiseSuperres.jpg',0)
f = cv2.dft(np.float32(img),flags=cv2.DFT_COMPLEX_OUTPUT)
fshift = np.fft.fftshift(f)
magnitude_spectrum = 20*np.log(cv2.magnitude(fshift[:,:,0],fshift[:,:,1])+1)
rows, cols = img.shape
crow, ccol = int(rows/2), int(cols/2)
mask = np.ones((rows, cols, 2), np.uint8)
#Circle
r = int(np.max(img.shape) * .28)
center = [crow, ccol]
x, y = np.ogrid[:rows, :cols]
mask_area = (x - center[0]) ** 2 + (y - center[1]) ** 2 >= r*r
mask[mask_area] = 0
#Gradient circle
x_axis = np.linspace(-1, 1, img.shape[1])
y_axis = np.linspace(-1, 1, img.shape[0])
xx, yy = np.meshgrid(x_axis, y_axis)
arr = np.sqrt(xx ** 2 + yy ** 2)-5
arr = np.expand_dims(arr,axis=2)
plt.imshow(arr, cmap='gray')
plt.show()
# mask[arr] = 0
fshift_masked = fshift * mask
# fshift_masked = fshift / arr * mask
magnitude_spectrum_masked = 20*np.log(cv2.magnitude(fshift_masked[:,:,0],fshift_masked[:,:,1])+1)
fishift_masked = np.fft.ifftshift(fshift_masked)
img_back = cv2.idft(fishift_masked)
img_back = cv2.magnitude(img_back[:,:,0],img_back[:,:,1])
# cv2.imshow('test',np.array(img_back,dtype=np.uint8))
# cv2.imwrite('fFtTranformMaskedImg.jpg',np.array(img_back))
plt.subplot(141),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(142),plt.imshow(magnitude_spectrum, cmap = 'gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.subplot(143),plt.imshow(magnitude_spectrum_masked, cmap = 'gray')
plt.title('Magnitude Spectrum masked'), plt.xticks([]), plt.yticks([])
plt.subplot(144),plt.imshow(img_back, cmap = 'gray')
plt.title('img_back'), plt.xticks([]), plt.yticks([])
plt.show()
# def dft_converter(img):
# img = cv.imread('unDenoiseSuperres.jpg')
# img_b = img[:,:,0]
# img_g = img[:,:,1]
# img_r = img[:,:,2]
#
# def convertdft(img):
# f = cv2.dft(np.float32(img), flags=cv2.DFT_COMPLEX_OUTPUT)
# fshift = np.fft.fftshift(f)
# magnitude_spectrum = 20 * np.log(cv2.magnitude(fshift[:, :, 0], fshift[:, :, 1]) + 1)
#
# rows, cols = img.shape
# crow, ccol = int(rows / 2), int(cols / 2)
#
# mask = np.ones((rows, cols, 2), np.uint8)
# r = 500
# center = [crow, ccol]
# x, y = np.ogrid[:rows, :cols]
# mask_area = (x - center[0]) ** 2 + (y - center[1]) ** 2 >= r * r
# mask[mask_area] = 0
#
# fshift_masked = fshift * mask
# magnitude_spectrum_masked = 20 * np.log(cv2.magnitude(fshift_masked[:, :, 0], fshift_masked[:, :, 1]) + 1)
# fishift_masked = np.fft.ifftshift(fshift_masked)
# img_back = cv2.idft(fishift_masked)
# img_back = cv2.magnitude(img_back[:, :, 0], img_back[:, :, 1])
#
# img_back = cv2.normalize(img_back,None,0,1,cv2.NORM_MINMAX)
# # cv.imshow('test',img_back)
#
# # plt.subplot(141), plt.imshow(img, cmap='gray')
# # plt.title('Input Image'), plt.xticks([]), plt.yticks([])
# #
# # plt.subplot(142), plt.imshow(magnitude_spectrum, cmap='gray')
# # plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
# #
# # plt.subplot(143), plt.imshow(magnitude_spectrum_masked, cmap='gray')
# # plt.title('Magnitude Spectrum masked'), plt.xticks([]), plt.yticks([])
# #
# # plt.subplot(144), plt.imshow(img_back, cmap='gray')
# # plt.title('img_back'), plt.xticks([]), plt.yticks([])
# #
# # plt.show()
#
# return img_back
# # cv2.imshow('test',np.array(img_back,dtype=np.uint8))
# # cv2.imwrite('fFtTranformMaskedImg.jpg',np.array(img_back))
#
#
# deNoise_imgb = convertdft(img_b)
# deNoise_imgg = convertdft(img_g)
# deNoise_imgr = convertdft(img_r)
#
# deNoise_img = cv.merge((deNoise_imgb,deNoise_imgg,deNoise_imgr))
# cv.imshow('final',deNoise_img)
# cv.waitKey(10000)
#
# dft_converter(1)