-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
65 lines (61 loc) · 1.52 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import numpy as np
# First order matrices
dx = 1./32
dy = 1./32
M = dx*dy/36*np.matrix(
np.array([[4,2,2,1],
[2,4,1,2],
[2,1,4,2],
[1,2,2,4]])
)
print("Mass: \n{}".format(M))
M_inv = np.linalg.inv(M)
print("Mass inverse: \n{}".format(M_inv))
u = 1./np.sqrt(2)
v = u
Dx = dy/12*np.matrix(
np.array([[-2,-2,-1,-1],
[2,2,1,1],
[-1,-1,-2,-2],
[1,1,2,2]])
)
Dy = dx/12*np.matrix(
np.array([[-2,-1,-2,-1],
[-1,-2,-1,-2],
[2,1,2,1],
[1,2,1,2]])
)
D = u*Dx + v*Dy
print("Total differentiation matrix: \n{}".format(D))
F0 = dy/6*np.matrix(
np.array([[2,0,1,0],
[0,0,0,0],
[1,0,2,0],
[0,0,0,0]])
)
F1 = dy/6*np.matrix(
np.array([[0,0,0,0],
[0,2,0,1],
[0,0,0,0],
[0,1,0,2]])
)
F2 = dx/6*np.matrix(
np.array([[2,1,0,0],
[1,2,0,0],
[0,0,0,0],
[0,0,0,0]])
)
F3 = dx/6*np.matrix(
np.array([[0,0,0,0],
[0,0,0,0],
[0,0,2,1],
[0,0,1,2]])
)
print("Flux matrices: \n{}\n{}\n{}\n{}".format(F0,F1,F2,F3))
print("Stiffness matrix: \n{}".format(np.matmul(M_inv,D)))
print("Lifting matrices: \n{}\n{}\n{}\n{}".format(
np.matmul(M_inv, F0),
np.matmul(M_inv, F1),
np.matmul(M_inv, F2),
np.matmul(M_inv, F3)
))