-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprocess.py
executable file
·186 lines (162 loc) · 3.99 KB
/
process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import re
import pandas as pd
import json
import requests_cache
import requests
from bs4 import BeautifulSoup
requests_cache.install_cache('google')
requests_cache.install_cache('bee_cache')
googleArticleList = []
'''
@param string filename
@return DataFrame df
'''
def readFile(filename):
df = pd.read_csv(filename)
df = df.fillna('')
return df
'''
@param string searchTerm
@param string site
@param boolean useLiteral
'''
def createSearchQuery(searchTerm, useLiteral=True):
literalStr = "%22"
#siteStr = "+site:"
termString = splitSearchTerm(searchTerm)
if useLiteral == False:
literalStr = ""
query = literalStr + termString + literalStr #siteStr
print(query)
#site
return query
'''
@param list searchTerm
@return string plusString
'''
def splitSearchTerm(searchTerm):
if str(searchTerm) == '':
return searchTerm
else:
searchTermList = searchTerm.split()
plusString = ""
for term in searchTermList:
plusString += term + "+"
return plusString
'''
@param string query
'''
def runSearch(query):
searchUrl = "https://www.googleapis.com/customsearch/v1?q="
cx = "&cx=013182954640320586502:2ru_2p3uep4"
key = "&key=AIzaSyBfyhDRE9PPka6Rc4X4QQCS91L2X-_UIJg"
result = requests.get(searchUrl + query + key + cx)
return result
'''
@param request result
@returns list l
'''
def parseResult(searchTerm, result):
a = result.text
jresp = json.loads(a)
print(jresp)
#use this for relevance
l = []
outputDict = {}
#print(jresp)
if jresp['searchInformation']['totalResults'] == '0':
outputDict['company'] = searchTerm
outputDict['title'] = None
outputDict['link'] = None
outputDict['snippet'] = None
outputDict['relevance'] = -1
l.append(outputDict)
else:
j = jresp['items'][0]
outputDict = {}
outputDict['company'] = searchTerm
outputDict['title'] = j['title']
if 'sacbee' in j['link']:
outputDict['link'] = j['link']
else:
outputDict['link'] = None
outputDict['snippet'] = j['snippet']
outputDict['relevance'] = 1
l.append(outputDict)
return outputDict
#return l[0]
'''
@param dictionary d
@returns None
'''
def buildDataFrameFromDict(d, searchTerm):
googleArticleList.append(d)
'''
@param string searchTerm
'''
def getGoogleResponses(searchTerm):
query = createSearchQuery(searchTerm)
result = runSearch(query)
l = parseResult(searchTerm, result)
return l
'''
@param dictionary
@returns string
'''
def getApiLink(d):
return d['link']
'''
@param string url
@returns string body
'''
def getArticleBody(url):
if url is None:
return ""
a = requests.get(url)
#get the article body and title
soup = BeautifulSoup(a.text)
article = soup.find_all(id = "content-body-")
sections = []
#add all the <p> into a list
for row in article:
sections.append(row.get_text(strip=True))
string = ""
for elements in sections:
string += elements
return string
'''
@param string textBlob
'''
def getRelevanceCounts(textBlob):
l = ['law', 'bill', 'regulation', 'congress']
relevanceCount = 0
for words in textBlob:
words = preprocess(words)
if words in l:
relevanceCount += 1
return relevanceCount
'''
@param string
'''
def preprocess(str_in):
b = ""
for a in str_in.split():
lower = a.lower()
lower = re.sub(r"[^\w\s]", '', lower)
b += lower + " "
return b
'''
@TODO: finish the driver
@ driver to run the program
'''
def run():
df = readFile('minilobby.csv')
#df = df.head()
df['api'] = df['Client'].apply(getGoogleResponses)
df['link'] = df['api'].apply(getApiLink)
df['articleBody'] = df['link'].apply(getArticleBody)
df['relevantCount'] = df['articleBody'].apply(getRelevanceCounts)
df.sort(['relevantCount'], ascending=False)
df.to_csv("test2.csv")
return df
df = run()