forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_fx_backends.py
252 lines (201 loc) · 10 KB
/
test_fx_backends.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
# Owner(s): ["module: fx"]
import copy
import sys
import logging
from typing import List, Tuple
import torch
from torch.fx._symbolic_trace import symbolic_trace
from torch.fx.experimental.proxy_tensor import make_fx
from torch.fx.passes.backends.nvfuser import NvFuserBackend
from torch.testing._internal.common_utils import run_tests, TEST_CUDA, TestCase
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
dtypes,
)
if not TEST_CUDA:
print('CUDA not available, skipping tests', file=sys.stderr)
TestCase = object # noqa: F811
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
class HF_T5_Partial(torch.nn.Module):
def inputs_meta(self):
return [
(torch.Size([512, 512]), torch.float32),
(torch.Size([512, 512]), torch.float32),
(torch.Size([512, 512]), torch.float32),
(torch.Size([512, 512]), torch.float32),
(torch.Size([512]), torch.float32),
(torch.Size([2048, 512]), torch.float32),
(torch.Size([512, 2048]), torch.float32),
(torch.Size([512]), torch.float32),
(torch.Size([8, 1024, 512]), torch.float32),
(torch.Size([8, 8, 1024, 1024]), torch.float32),
]
def forward(self, primals_1, primals_2, primals_3, primals_4, primals_5,
primals_6, primals_7, primals_8, primals_9, primals_10):
pow_1 = torch.ops.aten.pow(primals_9, 2)
mean = torch.ops.aten.mean(pow_1, [-1], True)
add = torch.ops.aten.add(mean, 1e-06)
rsqrt = torch.ops.aten.rsqrt(add)
mul = torch.ops.aten.mul(primals_9, rsqrt)
mul_1 = torch.ops.aten.mul(primals_5, mul)
t = torch.ops.aten.t(primals_3)
view = torch.ops.aten.view(mul_1, [8192, 512])
mm = torch.ops.aten.mm(view, t)
_unsafe_view = torch.ops.aten._unsafe_view(mm, [8, 1024, 512])
view_1 = torch.ops.aten.view(_unsafe_view, [8, -1, 8, 64])
transpose = torch.ops.aten.transpose(view_1, 1, 2)
t_1 = torch.ops.aten.t(primals_1)
view_2 = torch.ops.aten.view(mul_1, [8192, 512])
mm_1 = torch.ops.aten.mm(view_2, t_1)
_unsafe_view_1 = torch.ops.aten._unsafe_view(mm_1, [8, 1024, 512])
view_3 = torch.ops.aten.view(_unsafe_view_1, [8, -1, 8, 64])
transpose_1 = torch.ops.aten.transpose(view_3, 1, 2)
t_2 = torch.ops.aten.t(primals_4)
view_4 = torch.ops.aten.view(mul_1, [8192, 512])
mm_2 = torch.ops.aten.mm(view_4, t_2)
_unsafe_view_2 = torch.ops.aten._unsafe_view(mm_2, [8, 1024, 512])
view_5 = torch.ops.aten.view(_unsafe_view_2, [8, -1, 8, 64])
transpose_2 = torch.ops.aten.transpose(view_5, 1, 2)
transpose_3 = torch.ops.aten.transpose(transpose_1, 3, 2)
expand = torch.ops.aten.expand(transpose, [8, 8, 1024, 64])
clone = torch.ops.aten.clone(expand, memory_format=torch.contiguous_format)
_unsafe_view_3 = torch.ops.aten._unsafe_view(clone, [64, 1024, 64])
expand_1 = torch.ops.aten.expand(transpose_3, [8, 8, 64, 1024])
clone_1 = torch.ops.aten.clone(expand_1, memory_format=torch.contiguous_format)
_unsafe_view_4 = torch.ops.aten._unsafe_view(clone_1, [64, 64, 1024])
bmm = torch.ops.aten.bmm(_unsafe_view_3, _unsafe_view_4)
_unsafe_view_5 = torch.ops.aten._unsafe_view(bmm, [8, 8, 1024, 1024])
add_ = torch.ops.aten.add_(_unsafe_view_5, primals_10)
_softmax = torch.ops.aten._softmax(add_, -1, False)
expand_2 = torch.ops.aten.expand(_softmax, [8, 8, 1024, 1024])
view_6 = torch.ops.aten.view(expand_2, [64, 1024, 1024])
expand_3 = torch.ops.aten.expand(transpose_2, [8, 8, 1024, 64])
clone_2 = torch.ops.aten.clone(expand_3, memory_format=torch.contiguous_format)
_unsafe_view_6 = torch.ops.aten._unsafe_view(clone_2, [64, 1024, 64])
bmm_1 = torch.ops.aten.bmm(view_6, _unsafe_view_6)
_unsafe_view_7 = torch.ops.aten._unsafe_view(bmm_1, [8, 8, 1024, 64])
transpose_4 = torch.ops.aten.transpose(_unsafe_view_7, 1, 2)
clone_3 = torch.ops.aten.clone(transpose_4, memory_format=torch.contiguous_format)
view_7 = torch.ops.aten.view(clone_3, [8, -1, 512])
t_3 = torch.ops.aten.t(primals_2)
view_8 = torch.ops.aten.view(view_7, [8192, 512])
mm_3 = torch.ops.aten.mm(view_8, t_3)
_unsafe_view_8 = torch.ops.aten._unsafe_view(mm_3, [8, 1024, 512])
add_1 = torch.ops.aten.add(primals_9, _unsafe_view_8)
pow_2 = torch.ops.aten.pow(add_1, 2)
mean_1 = torch.ops.aten.mean(pow_2, [-1], True)
add_2 = torch.ops.aten.add(mean_1, 1e-06)
rsqrt_1 = torch.ops.aten.rsqrt(add_2)
mul_2 = torch.ops.aten.mul(add_1, rsqrt_1)
mul_3 = torch.ops.aten.mul(primals_8, mul_2)
t_4 = torch.ops.aten.t(primals_6)
view_9 = torch.ops.aten.view(mul_3, [8192, 512])
mm_4 = torch.ops.aten.mm(view_9, t_4)
_unsafe_view_9 = torch.ops.aten._unsafe_view(mm_4, [8, 1024, 2048])
relu = torch.ops.aten.relu(_unsafe_view_9)
t_5 = torch.ops.aten.t(primals_7)
view_10 = torch.ops.aten.view(relu, [8192, 2048])
mm_5 = torch.ops.aten.mm(view_10, t_5)
_unsafe_view_10 = torch.ops.aten._unsafe_view(mm_5, [8, 1024, 512])
add_3 = torch.ops.aten.add(add_1, _unsafe_view_10)
return [add_3, rsqrt, _unsafe_view_3, t_3, _softmax, view_6, mul_2, t, view_9, t_1, primals_5, add_1,
_unsafe_view_4, view_2, view_10, t_5, t_2, primals_8, view_4, view_8, rsqrt_1, primals_9, t_4,
mul, _unsafe_view_6, relu, view]
class TestFxNvFuserBackend(TestCase):
def _generate_random_inputs(self, device, inputs_meta: List[Tuple[torch.Size, torch.dtype]]):
inputs = []
for meta in inputs_meta:
shape, dtype = meta
if dtype in {torch.int, torch.int32, torch.int64, torch.bool, torch.int, torch.uint8}:
input = torch.randint(0, 1, shape, dtype=dtype, device=device)
else:
input = torch.rand(shape, dtype=dtype, device=device)
inputs.append(input)
return inputs
@dtypes(torch.float32)
def test_nvfuser_call_module_backend(self, device, dtype):
class Model(torch.nn.Module):
def __init__(self):
super(Model, self).__init__()
self.bn = torch.nn.BatchNorm2d(3)
self.relu = torch.nn.ReLU()
def forward(self, inp):
o = self.bn(inp)
o = self.relu(o)
return o
inp = torch.randn(2, 3, 4, 5).to(dtype=dtype, device=device)
m = Model().to(dtype=dtype, device=device)
# note that the traced module here contains only `call_module` node,
# which isn't fused by nvfuser backend. But `nvfuser.compile` should run without error
traced = symbolic_trace(m)
nvfuser = NvFuserBackend()
compiled_module = nvfuser.compile(traced)
eager_result = m(inp)
nvfuser_result = compiled_module(inp)
torch.testing.assert_close(eager_result, nvfuser_result, rtol=1e-5, atol=1e-5)
@dtypes(torch.float32)
def test_nvfuser_backend(self, device, dtype):
m = HF_T5_Partial()
m.to(device)
traced = symbolic_trace(m)
nvfuser = NvFuserBackend()
compiled_module = nvfuser.compile(traced)
inputs = self._generate_random_inputs(device, m.inputs_meta())
eager_result = m(*inputs)
nvfuser_result = compiled_module(*inputs)
torch.testing.assert_close(eager_result, nvfuser_result, rtol=1e-5, atol=1e-5)
@dtypes(torch.float32)
def test_aten_square(self, device, dtype):
def fn(x):
square = torch.square(x)
a = square + 1
b = a + 1
return b
inputs = torch.randn(4, device=device)
traced = make_fx(fn)(inputs)
nvfuser = NvFuserBackend()
compiled_module = nvfuser.compile(copy.deepcopy(traced))
for node in compiled_module.graph.nodes:
if node.op == "call_function":
assert "fused" in str(node.target), "the entire function should be fused into a single fusion group"
eager_result = traced(inputs)
nvfuser_result = compiled_module(inputs)
torch.testing.assert_close(eager_result, nvfuser_result, rtol=1e-5, atol=1e-5)
@dtypes(torch.float32)
def test_aten_leakyrelu(self, device, dtype):
def fn(x):
square = torch.ops.aten.leaky_relu(x, 0.1)
a = square + 1
b = a + 1
return b
inputs = torch.randn(4, device=device)
traced = make_fx(fn)(inputs)
nvfuser = NvFuserBackend()
compiled_module = nvfuser.compile(copy.deepcopy(traced))
for node in compiled_module.graph.nodes:
if node.op == "call_function":
assert "fused" in str(node.target), "the entire function should be fused into a single fusion group"
eager_result = traced(inputs)
nvfuser_result = compiled_module(inputs)
torch.testing.assert_close(eager_result, nvfuser_result, rtol=1e-5, atol=1e-5)
@dtypes(torch.float32)
def test_aten_where(self, device, dtype):
def fn(x):
where = torch.ops.aten.where(x < 0, -x, x)
a = where + 1
b = a + 1
return b
inputs = torch.randn(4, device=device)
traced = make_fx(fn)(inputs)
nvfuser = NvFuserBackend()
compiled_module = nvfuser.compile(copy.deepcopy(traced))
for node in compiled_module.graph.nodes:
if node.op == "call_function":
assert "fused" in str(node.target), "the entire function should be fused into a single fusion group"
eager_result = traced(inputs)
nvfuser_result = compiled_module(inputs)
torch.testing.assert_close(eager_result, nvfuser_result, rtol=1e-5, atol=1e-5)
instantiate_device_type_tests(TestFxNvFuserBackend, globals(), only_for="cuda")
if __name__ == "__main__":
run_tests()