forked from chenjun2hao/Attention_ocr.pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
273 lines (237 loc) · 11.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
# coding:utf-8
from __future__ import print_function
import argparse
import random
import torch
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
import numpy as np
import os
import src.utils as utils
import src.dataset as dataset
import time
from src.utils import alphabet
from src.utils import weights_init
import models.crnn_lang as crnn
print(crnn.__name__)
parser = argparse.ArgumentParser()
parser.add_argument('--trainlist', default='./data/ch_train.txt')
parser.add_argument('--vallist', default='./data/ch_test.txt')
parser.add_argument('--workers', type=int, help='number of data loading workers', default=2)
parser.add_argument('--batchSize', type=int, default=4, help='input batch size')
parser.add_argument('--imgH', type=int, default=32, help='the height of the input image to network')
parser.add_argument('--imgW', type=int, default=280, help='the width of the input image to network')
parser.add_argument('--nh', type=int, default=256, help='size of the lstm hidden state')
parser.add_argument('--niter', type=int, default=21, help='number of epochs to train for')
parser.add_argument('--lr', type=float, default=0.001, help='learning rate for Critic, default=0.00005')
parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for adam. default=0.5')
parser.add_argument('--cuda', action='store_true', help='enables cuda', default=True)
parser.add_argument('--ngpu', type=int, default=1, help='number of GPUs to use')
parser.add_argument('--encoder', type=str, default='./expr/attentioncnn/encoder_600.pth', help="path to encoder (to continue training)")
parser.add_argument('--decoder', type=str, default='', help='path to decoder (to continue training)')
parser.add_argument('--experiment', default='./expr/attentioncnn', help='Where to store samples and models')
parser.add_argument('--displayInterval', type=int, default=10, help='Interval to be displayed')
parser.add_argument('--valInterval', type=int, default=1, help='Interval to be displayed')
parser.add_argument('--saveInterval', type=int, default=10, help='Interval to be displayed')
parser.add_argument('--adam', default=True, action='store_true', help='Whether to use adam (default is rmsprop)')
parser.add_argument('--adadelta', action='store_true', help='Whether to use adadelta (default is rmsprop)')
parser.add_argument('--keep_ratio', action='store_true', help='whether to keep ratio for image resize')
parser.add_argument('--random_sample', default=True, action='store_true', help='whether to sample the dataset with random sampler')
parser.add_argument('--teaching_forcing_prob', type=float, default=0.5, help='where to use teach forcing')
parser.add_argument('--max_width', type=int, default=71, help='the width of the featuremap out from cnn')
opt = parser.parse_args()
print(opt)
SOS_token = 0
EOS_TOKEN = 1 # 结束标志的标签
BLANK = 2 # blank for padding
if opt.experiment is None:
opt.experiment = 'expr'
os.system('mkdir -p {0}'.format(opt.experiment)) # 创建多级目录
opt.manualSeed = random.randint(1, 10000) # fix seed
print("Random Seed: ", opt.manualSeed)
random.seed(opt.manualSeed)
np.random.seed(opt.manualSeed)
torch.manual_seed(opt.manualSeed)
cudnn.benchmark = True
if torch.cuda.is_available() and not opt.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
transform = None
train_dataset = dataset.listDataset(list_file =opt.trainlist, transform=transform)
assert train_dataset
if not opt.random_sample:
sampler = dataset.randomSequentialSampler(train_dataset, opt.batchSize)
else:
sampler = None
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=opt.batchSize,
shuffle=False, sampler=sampler,
num_workers=int(opt.workers),
collate_fn=dataset.alignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio=opt.keep_ratio))
test_dataset = dataset.listDataset(list_file =opt.vallist, transform=dataset.resizeNormalize((opt.imgW, opt.imgH)))
nclass = len(alphabet) + 3 # decoder的时候,需要的类别数,3 for SOS,EOS和blank
nc = 1
converter = utils.strLabelConverterForAttention(alphabet)
# criterion = torch.nn.CrossEntropyLoss()
criterion = torch.nn.NLLLoss() # 最后的输出要为log_softmax
encoder = crnn.CNN(opt.imgH, nc, opt.nh)
# decoder = crnn.decoder(opt.nh, nclass, dropout_p=0.1, max_length=opt.max_width) # max_length:w/4,为encoder特征提取之后宽度方向上的序列长度
decoder = crnn.decoderV2(opt.nh, nclass, dropout_p=0.1) # For prediction of an indefinite long sequence
encoder.apply(weights_init)
decoder.apply(weights_init)
# continue training or use the pretrained model to initial the parameters of the encoder and decoder
if opt.encoder:
print('loading pretrained encoder model from %s' % opt.encoder)
encoder.load_state_dict(torch.load(opt.encoder))
if opt.decoder:
print('loading pretrained encoder model from %s' % opt.decoder)
encoder.load_state_dict(torch.load(opt.encoder))
print(encoder)
print(decoder)
image = torch.FloatTensor(opt.batchSize, 3, opt.imgH, opt.imgH)
text = torch.LongTensor(opt.batchSize * 5)
length = torch.IntTensor(opt.batchSize)
if opt.cuda:
encoder.cuda()
decoder.cuda()
# encoder = torch.nn.DataParallel(encoder, device_ids=range(opt.ngpu))
# decoder = torch.nn.DataParallel(decoder, device_ids=range(opt.ngpu))
image = image.cuda()
text = text.cuda()
criterion = criterion.cuda()
# loss averager
loss_avg = utils.averager()
# setup optimizer
if opt.adam:
encoder_optimizer = optim.Adam(encoder.parameters(), lr=opt.lr,
betas=(opt.beta1, 0.999))
decoder_optimizer = optim.Adam(decoder.parameters(), lr=opt.lr,
betas=(opt.beta1, 0.999))
elif opt.adadelta:
optimizer = optim.Adadelta(encoder.parameters(), lr=opt.lr)
else:
encoder_optimizer = optim.RMSprop(encoder.parameters(), lr=opt.lr)
decoder_optimizer = optim.RMSprop(decoder.parameters(), lr=opt.lr)
def val(encoder, decoder, criterion, batchsize, dataset, teach_forcing=False, max_iter=100):
print('Start val')
for e, d in zip(encoder.parameters(), decoder.parameters()):
e.requires_grad = False
d.requires_grad = False
encoder.eval()
decoder.eval()
data_loader = torch.utils.data.DataLoader(
dataset, shuffle=False, batch_size=batchsize, num_workers=int(opt.workers))
val_iter = iter(data_loader)
n_correct = 0
n_total = 0
loss_avg = utils.averager()
max_iter = min(max_iter, len(data_loader))
# max_iter = len(data_loader) - 1
for i in range(max_iter):
data = val_iter.next()
i += 1
cpu_images, cpu_texts = data
b = cpu_images.size(0)
utils.loadData(image, cpu_images)
target_variable = converter.encode(cpu_texts)
n_total += len(cpu_texts[0]) + 1 # 还要准确预测出EOS停止位
decoded_words = []
decoded_label = []
decoder_attentions = torch.zeros(len(cpu_texts[0]) + 1, opt.max_width)
encoder_outputs = encoder(image) # cnn+biLstm做特征提取
target_variable = target_variable.cuda()
decoder_input = target_variable[0].cuda() # 初始化decoder的开始,从0开始输出
decoder_hidden = decoder.initHidden(b).cuda()
loss = 0.0
if not teach_forcing:
# 预测的时候采用非强制策略,将前一次的输出,作为下一次的输入,直到标签为EOS_TOKEN时停止
for di in range(1, target_variable.shape[0]): # 最大字符串的长度
decoder_output, decoder_hidden, decoder_attention = decoder(
decoder_input, decoder_hidden, encoder_outputs)
loss += criterion(decoder_output, target_variable[di]) # 每次预测一个字符
loss_avg.add(loss)
decoder_attentions[di-1] = decoder_attention.data
topv, topi = decoder_output.data.topk(1)
ni = topi.squeeze(1)
decoder_input = ni
if ni == EOS_TOKEN:
decoded_words.append('<EOS>')
decoded_label.append(EOS_TOKEN)
break
else:
decoded_words.append(converter.decode(ni))
decoded_label.append(ni)
# 计算正确个数
for pred, target in zip(decoded_label, target_variable[1:,:]):
if pred == target:
n_correct += 1
if i % 100 == 0: # 每100次输出一次
texts = cpu_texts[0]
print('pred:%-20s, gt: %-20s' % (decoded_words, texts))
accuracy = n_correct / float(n_total)
print('Test loss: %f, accuray: %f' % (loss_avg.val(), accuracy))
def trainBatch(encoder, decoder, criterion, encoder_optimizer, decoder_optimizer, teach_forcing_prob=1):
'''
target_label:采用后处理的方式,进行编码和对齐,以便进行batch训练
'''
data = train_iter.next()
cpu_images, cpu_texts = data
b = cpu_images.size(0)
target_variable = converter.encode(cpu_texts)
utils.loadData(image, cpu_images)
encoder_outputs = encoder(image) # cnn+biLstm做特征提取
target_variable = target_variable.cuda()
decoder_input = target_variable[0].cuda() # 初始化decoder的开始,从0开始输出
decoder_hidden = decoder.initHidden(b).cuda()
loss = 0.0
teach_forcing = True if random.random() > teach_forcing_prob else False
if teach_forcing:
# 教师强制:将目标label作为下一个输入
for di in range(1, target_variable.shape[0]): # 最大字符串的长度
decoder_output, decoder_hidden, decoder_attention = decoder(
decoder_input, decoder_hidden, encoder_outputs)
loss += criterion(decoder_output, target_variable[di]) # 每次预测一个字符
decoder_input = target_variable[di] # Teacher forcing/前一次的输出
else:
for di in range(1, target_variable.shape[0]):
decoder_output, decoder_hidden, decoder_attention = decoder(
decoder_input, decoder_hidden, encoder_outputs)
loss += criterion(decoder_output, target_variable[di]) # 每次预测一个字符
topv, topi = decoder_output.data.topk(1)
ni = topi.squeeze()
decoder_input = ni
encoder.zero_grad()
decoder.zero_grad()
loss.backward()
encoder_optimizer.step()
decoder_optimizer.step()
return loss
if __name__ == '__main__':
t0 = time.time()
for epoch in range(opt.niter):
train_iter = iter(train_loader)
i = 0
while i < len(train_loader)-1:
for e, d in zip(encoder.parameters(), decoder.parameters()):
e.requires_grad = True
d.requires_grad = True
encoder.train()
decoder.train()
cost = trainBatch(encoder, decoder, criterion, encoder_optimizer,
decoder_optimizer, teach_forcing_prob=opt.teaching_forcing_prob)
loss_avg.add(cost)
i += 1
if i % opt.displayInterval == 0:
print('[%d/%d][%d/%d] Loss: %f' %
(epoch, opt.niter, i, len(train_loader), loss_avg.val()), end=' ')
loss_avg.reset()
t1 = time.time()
print('time elapsed %d' % (t1-t0))
t0 = time.time()
# do checkpointing
if epoch % opt.saveInterval == 0:
val(encoder, decoder, criterion, 1, dataset=test_dataset, teach_forcing=False) # batchsize:1
torch.save(
encoder.state_dict(), '{0}/encoder_{1}.pth'.format(opt.experiment, epoch))
torch.save(
decoder.state_dict(), '{0}/decoder_{1}.pth'.format(opt.experiment, epoch))